
Workflow issues in atomistic simulations

Clovis Chapman
1
, Jon Wakelin

2
, Emilio Artacho

2
, Martin T Dove

2
, Mark Calleja,

Richard Bruin
2
and Wolfgang Emmerich

1

1
Dept. of Computer Science, University College London,

Gower St, London WC1E 6BT, United Kingdom
2
Dept. of Earth Sciences, Downing Street, Cambridge CB2 3EQ, UK

Abstract

The following article describes the techniques and mechanisms that we have used to tackle workflow

problems encountered in the e-minerals project. We examine how established tools and technologies

can be brought together to specify and deploy a computational process, consisting of a set of jobs and

tasks, on our production level mini-grid infrastructure, with respect to a specific problem - the

distribution of calculations required to determine, in a systematic way, the mechanisms by which

pollutant molecules such as DDT, dioxins and biphenyls, become bound to soil minerals. We also

briefly discuss the use of data standards such as CML and Web-Service based grid standards as a

means to facilitate workflow specification.

Keywords

Workflow, Grid, combinatorial problems, CML

1. Introduction

One of the aims of the e-minerals project [1] is the systematic study of adsorption characteristics of

pollutant molecules on soil mineral surfaces. The problem is very complex from different points of

view.

(i) In order to establish significant trends and possibly correlations between adsorption

energies and phenomenological results, the study of a large enough set of systems is

required. The targeted family of organic pollutants of interest has over two hundred

different molecules, which, together with the several relevant soil minerals, their likely

surfaces, possible edges, steps etc., make a huge combinatorial problem with lots of (fairly

independent) calculations. We are particularly interested in the chlorinated dibenzodioxins,

dibenzofurans, biphenyl, DDT and PCB families. Some of them of industrial origin, others

coming from agricultural practices, these compounds are particularly persistent in the

environment, and represent a pressing problem even if some of them are no longer used.

(ii) Each separate case requires many calculations (defining by ``calculation" a geometry

relaxation to a close local energy minimum), in as much as many possible locations and

orientations are a priori possible for a given molecule on a given surface.

(iii) Different situations will require different levels of theory (from empirical force fields to ab

initio calculations).

These characteristics demand special computational treatments beyond what is customary nowadays

for condensed matter simulations. It requires efficient automation of the calculations, including inter-

code operability, in addition to making simultaneous use of large amounts of computational resources.

These type of workflow problems are inherent to grid computing. Most scientific problems cannot be

solved using solely one application but usually require the definition of a computational process or

workflow process, consisting of a set of tasks or jobs, which must be executed as a whole for

significant results to be obtained. However the grid is a relatively complex environment in which to

deploy such computational processes. It consists of a number of resources independently managed,

each with its own scheduling and operating system, and each offering very different execution

environments: one must be able to coordinate the remote submission of jobs across these

heterogeneous and autonomous resources, transfer any required input and output data, monitor the job

executions, handle potential faults, and most importantly be capable of responding to the dynamic

nature of the grid - where the availability of specific resources might vary greatly from one moment to

the next.

From a user perspective the problem is relatively simple to define: how can one specify a

computational process and simply ‘throw’ as many resources at it as possible in order for it to be

completed in a timely fashion and with minimum intervention? But from a computing perspective, no

single tool or solution exists to tackle the workflow problems that we have encountered so far in the e-

minerals project.

We will cover in this article the ways in which we have brought together existing tools and

technologies to allow users to specify computational processes and deploy them on our e-minerals

mini-grid infrastructure – as well as non-dedicated e-science resources such as HPCx [8]-, with respect

to the scientific problems that we aim to solve. We will also discuss how the use of standards such as

the Computational Mark-up Language (CML) will facilitate these processes, and how the adoption of

Web Services by the Grid community may provide us in the near future with more flexibility in

specifying these processes.

2. A Real World Problem: Pollutants in Soils

The workflow problem that we introduce here as our reference use case is the management is the

management and distribution of calculations required to determine, in a systematic way, the

mechanisms by which pollutant molecules such as DDT, dioxins and biphenyls, become bound to soil

minerals.

Though the scientific details are outside the scope

of this article (these are described more extensively

in [2]), this has all the traits of a complex simulation

scheme: there are large numbers of relevant

molecules, minerals and mineral surfaces that need

to be taken into account, and for each combination

we need to systematically investigate the potential

energy surface of the system, which in itself requires

a large number of calculations.

The computational process is illustrated in figure

1. This process, consisting of SIESTA jobs,

calculations dealing with energy minimisations, is a

particularly good example of the type of workflow

requirements that can be encountered in a grid

environment. A vast majority of the tasks can be

executed in parallel, but some are inter-dependent,

where the output of one job is processed and fed into

another, and after each calculation a small post-

processing step is required before the next

simulation. Recursion may be required, and we must

also take into account the large number of jobs, and

the potentially large amount of data that will be

produced. This does not make it possible for the

computational process to be handled manually nor

can it be computed by a single machine in a

reasonable amount of time.

From a computational perspective, the structure of

this process is hence a particularly complete

example of the type of workflow problems that may

be deployed in a grid environment. Not only is the

workflow a combination of sequential and parallel

executions but the process is also not static: the outcome of a particular subset of the process - (1) on

the figure - could modify the course of action to be taken next: for example, a particular result may or

may not require further processing to take place before moving on to other tasks in the process.

Coupled to job executions is the issue of data management: input data needs to be transferred

alongside jobs to the machines responsible for their execution, output data needs to be stored and later

retrieved from data stores, data might need to be parsed and converted to the format expected by a

particular application. These data management tasks must be fully integrated into our computational

process.

The difficulty in managing all of these tasks manually, particularly when jobs may take considerable

amounts of time, in a scale of days or weeks, or may simply be too numerous to handle, means that we

need to automate the workflow process.

3. The e-minerals mini-grid

The environment that we use to deploy our use case process is the e-minerals mini-grid; our

production level grid infrastructure. Described in [3], it encapsulates a number of contributed and

shared resources such as:

- 3 PBS-managed 16-node clusters

- The UCL Condor pool (~1000 nodes) and another Condor pool at Cambridge (26 nodes)

- An IBM pSeries parallel computer

- A Sunfire 880

- UK e-science level 2 grid resources such as HPCx and NGS (National Grid Service) systems.

It is worth briefly describing some aspects of our mini-grid architecture that must be taken into

consideration when deploying a workflow.

All resources are accessed via a Globus Resource Allocation Manager (GRAM) interface – either 2.4

or 3.2 [4, 5]. The GRAM is meant to provide a secure and standard interface for job submission and

monitoring, which will hence conceal from the users the differences that may exist between the

different scheduling systems run by the underlying resources.

Regarding data management, a number of SRB (Storage Resource Broker) [12] vaults were set up on

our dedicated resources to support the high data storage requirements of our users. The SRB

essentially brings together a number of separate data stores (vaults) in order to make them appear to the

user as a single unified virtual file system. It also provides functionality such as data replication in

order to allow for increased robustness.

Though our mini-grid is in itself a powerful infrastructure, the fact that these resources are

independently managed proves to be a relatively big obstacle to overcome when dealing with

workflows. The GRAM may provide us with a standardised way of submitting jobs to a resource, but it

is still merely a job submission interface and does not provide us with the means to manage and queue

multiple submissions to a single or multiple independent resources. There is for example no simple and

central way of determining resource availability; some resources may be heavily used, whilst others

may be left mostly idle, and this may vary during the lifetime of the computational process. We must

also find means of linking GRAM submission to SRB storage functions to ensure that required input

data is retrieved from the SRB and transferred to the resource alongside the job for execution and

output data stored back into the SRB upon job completion.

It is hence left to the client (i.e. the machine from which the user is initiating the computational

process) to manage the deployment and correct execution of the computational process across these

resources. This task would consist of:

- Selecting suitable and available resources on which to run jobs

- Handling individual job submissions to resources according to the workflow requirements

- Manage the transfer of executable binaries and input data retrieved from the SRB stores

- Monitoring the correct execution of the jobs

- Rescheduling jobs elsewhere if for example errors occur or new and better resources become

available

- Transfer jobs back into the SRB for storage

4. Tools and usage techniques

4.1 Job submission management

Our approach in the e-minerals project has been to build upon established tools and technologies,

such as Condor, Globus and the SRB, and we have maintained this principle when dealing with

workflow problems. The tools and technologies that we have adopted to handle the computing aspects

(job submission) are all part of the widely adopted Condor system [6][7]. Though primarily a high

throughput computing resource management system for machine pools and clusters, it also provides us

with the following client tools to manage the submission of jobs to Grid resources:

- Condor-G: Condor-G is a client-side job scheduler, used to submit jobs to resources

presenting a Globus GRAM interface, such as our mini-grid resources. Essentially it provides

means for users to ‘queue’ jobs to be submitted. It allows a large number of jobs and their

requirements to be specified very simply, whereupon it will manage their individual

submissions, handle the transfer of input and output files between client and resource and

monitor the correct execution of the job. It is also much more flexible and convenient to use

than Globus client tools, relying on the traditional Condor submission interface.

- Condor-G with advertisements: One of the limitations of using Condor-G is that users must

specify explicitly the resource on which they want a job is to be run, and this does not really

allow users to take advantage of an environment consisting of many different resources with

different capabilities. To partially overcome this limitation, Condor-G can provide limited

matchmaking capabilities: users can define advertisement files describing the characteristics

of available resources, such as the operating system, memory available, maximum amount of

jobs that can be run, etc, which will be used by Condor-G to determine which site is most

suitable for a specific job to be run.

- Condor glide-in: Glide-in is the ‘step above’ Condor-G, providing us with means to respond

to the dynamic nature of the grid. It essentially allows users to build a personal Condor pool

out of grid resources. It achieves this by submitting server-side components (daemons) of

Condor to selected sites as jobs via the GRAM. Once these daemons have been allocated

resources and started, they will report back to the client and notify it of resource

characteristics and availability. Condor-G can then submit jobs directly to these daemons,

which will be responsible for monitoring their execution locally. This approach provides us

with additional functionality, such as checkpointing – where the state of a job is saved on a

regular basis so that it can be restarted from where it last stopped in case of failure – or

migration of jobs – the execution of a job can be stopped and continued on another resource.

From a workflow perspective, this addresses many of our requirements: allocations can be

requested from all the various grid resources, and Condor will then dynamically assign queued

jobs to suitable resources as they become available. Multiple resources can be exploited in

parallel in this manner.

- DAGMan (Directed Acyclic Graph Manager): DAGMan is used in conjunction with the

Condor-G scheduler (and hence glide-in) and allows us to specify dependencies that may exist

between jobs. Following a specified sequence, DAGMan will submit jobs to the scheduler and

monitor the queue for job terminations, upon which it will submit the next set of jobs in the

sequence. The process is specified in the form of an acyclic graph, with jobs represented as

parents and children nodes in the graph. It also provides us with means to run pre and post

execution scripts on the client machine, which can be used for example to rename files or for

simple clean up tasks.

An appealing aspect of these Condor tools is the fact that they require only the minimum to be set up

on the resource. A user in a grid setting generally has very little influence over the management of the

resources, and hence cannot make any assumption as to what would be available on the server side.

The only requirement of the Condor middleware is a correctly configured and, in the case of glide-in, a

complete (i.e. alongside the GRAM, GridFTP, and other Globus tools are required) Globus installation

– Globus being a de-facto standard in grid computing.

4.2 Data Management

There are 3 aspects of data management that must be taken into consideration: data storage, data

transfer – between client, execution and storage sites - and data transformation – which deals with the

parsing and conversion of data from one application format to another.

As previously described, the SRB is used to handle our storage needs. The most obvious and perhaps

simplest way of managing interactions with the SRB is for the client to retrieve input files and binaries

from the SRB before job submission and store the output data into the SRB upon job completion; the

actual transfer of files to and from the resource being handled by Condor-G’s file transfer mechanisms.

However, the client might quickly become a system bottleneck. Indeed, it must have sufficient storage

capacity and transfer capabilities to handle the data produced and required by all jobs in a process,

which may become highly problematic when these increase in number.

A much preferable approach is to ensure that data is transferred directly between resources and the

SRB, with the client only being responsible for orchestrating the transfers remotely. This can be

achieved by using DAG-Man to perform the following sequence of actions when submitting a job to a

specific resource:

- Before submitting a job, a script is sent to be run on the selected resource, which will set up

the necessary environment, retrieve required input files and binaries from the SRB and store

them in a temporary location.

- The job is then submitted. Rather than relying on file transfer mechanisms; job requirements

will specify the location of the required files on the remote resource, and a location as to

where the output files should be stored on the remote resource upon completion.

- A final script is sent over to the resource, which, when run, will retrieve the output files from

the specified location and store them into the SRB. The remote environment is then cleaned

up and the script exits.

DAG-Man will ensure that these three tasks are performed in order and that each task is completed

before the next begins. Appropriate applications were written to simplify the specification of these

tasks, so that data management tasks can be specified within a Condor-G submission file, without

having to actually deal directly with the DAG-Man scripts. These applications enable users to specify

their jobs as they would normally with Condor-G, but with an additional set of parameters allowing

them to specify which files should be retrieved and stored into the SRB from the actual resource. The

actual 3-step process described above would hence be abstracted from the user by the application.

It is also possible to use DAG-Man for data transformation. Before and after submission of each job

a small script can be run to parse and convert the data into and from the format expected by the

executable program. However the use of data standards can considerably ease this task and we discuss

this in a later section.

 5. Applying these mechanisms to our workflow process

Though the tools and mechanisms described above allow us to meet many of our workflow

requirements, there are still many issues that need to be addressed. One of the primary difficulties that

we have encountered in applying these mechanisms is that they result in a potentially large collection

of scripts, submission files and DAG-Man specification files being required to specify the process. In

order for such a process to be manageable, it is necessary to adopt a unified approach to process

specification. We have achieved this by writing a case specific front-end system using Perl, which will

generate all the required files and submit these to the Condor middleware according to the user’s

requirements and input parameters.

If we consider individual tools and technologies, though Condor-G and DAG-Man worked in most

cases ‘out of the box’, the requirements of Condor glide-in, with respect to infrastructure layout, have

proven difficult to meet. In order to use glide-in with a cluster resource, it needs to be able to access

individual nodes in order to communicate with the daemons it has submitted as jobs. This unfortunately

is often difficult: individual execution nodes are often behind a firewall or on private local area

network (LAN) and hence cannot be accessed externally. There are means to circumvent this problem

(open firewall ports – add client to private LAN), but we can only achieve this with resources over

which we have administrative control (i.e. dedicated e-minerals resources). We hence have built our

initial workflow system limiting ourselves to using mainly Condor-G, advertisements, and DAG-

Man/SRB links into our application.

6. Adopting standards to facilitate workflow management

6.1 CML: The Chemical Mark-up Language

CML (Chemical Mark-up Language) is an XML (eXtensible Mark-up Language) based data

formatting standard for chemical data. It defines a standardised way of representing this data,

concentrating specifically on molecules, and supporting amongst other things a hierarchy for

compound molecules, reaction and macromolecular structures/sequences. Being based on XML it can

be easily be extended to incorporate additional information if required. CML has been described in [6].

 With regards to workflow and combinatorial problems, adopting a data presentation standard can

solve the problem of incompatibility between application specific-formats and remove the need for data

parsing and conversion. Indeed, each application used in a workflow may have its own specific ways of

representing similar information and it is often necessary to rely on parsers to transform data from one

representation to the next. Of course different parsers may be required for different types of conversion.

CML-enabled versions of applications allow increased compatibility and facilitate workflow

integration. The e-minerals team has been involved in a number of CML related projects. We have for

example participated in the development of a CML-enabled version of SIESTA [2] for use in the case

described above and are currently in the process of developing a CML-enabled version of DL-POLY,

modifying individual functions of the application for these to be capable of processing or producing

CML data.

6.2 Web Services for Grid computing

The recent adoption of Web Services by the Grid computing community, initiated with the Open

Grid Services Architecture (OGSA) [13] and later continued with the Web Service Resource

Framework (WSRF) [14], has opened up access to a wide range of Web Service technologies and tools,

and of particular relevance to this article are Web Service orchestration technologies, such as the

Business Process Execution Language (BPEL) [11].

These differ from traditional grid workflow specification tools by specifying a workflow in terms of

service invocations rather than jobs. This approach allows all the various aspects of our workflow –

execution management, data management and general service management aspects such as fault

handling - to be specified as a single integrated process rather than handled separately. The BPEL

language also allows us to specify conditional statements (where we can specify behaviour according

to different outcomes), specify exceptions (where one can state what actions to take when an error

occurs), and manipulate XML-based data (such as CML) within the process rather than have

modifications of input files being performed via independent scripts.

Adopting BPEL would allow our workflows to be specified in a unified and manageable manner.

The only drawback that we have currently identified would be that specifying such processes require an

intricate knowledge of the inner workings of Web Services and an interesting area of research would be

the abstraction of such a language to a scientific level (e.g. using CML as the data standard). We are

hoping that current work with WSRF [9] will enable us in the future to further investigate the use of

BPEL as a workflow specification language.

It should be noted that many grid technologies have been or currently are being brought in line with

Web Service standards, including the Globus toolkit, the main building block of our mini-grid and

Condor, development of which is partially handled by e-minerals project members. These

standardisations of tools will considerably simplify interactions with a wider range of technologies at

the infrastructure level.

7. Conclusion

We have described here some of the techniques that we are currently using in the e-minerals project

to deal with workflow specification and management, and some of the future directions that are being

taken. Our approach so far has been to focus on “out of the box” technologies, in order to reach a

production level infrastructure within a reasonable amount of time, and also to demonstrate that much

can actually be achieved with existing tools and technologies. Many of the problems that we have faced

have much to do with the actual integration of technologies, and most development that has been done

has gone into actually simplifying the means by which we specify workflows, and reduce the need for

users to actually deal with the complexity of specifying every interaction.

This workflow process was an opportunity to identify repeating patterns, such as the need to transfer

data from the SRB to the actual resource at job execution time as described in section 4.2, and develop

applications that would operate at a higher level of abstraction.

There is nevertheless still much to do in terms of integration, and much of this has to do with

reaching a higher level of flexibility - specifying conditional statements and exceptions, dynamically

modifying input data, etc. - whilst still maintaining a certain degree of abstraction in order to make

complex workflow specification relatively accessible for users without important computational skills.

Hopefully the incorporation of Web Services, CML and BPEL will go some way towards assisting us

at the infrastructure level. At the very least this will provide with a sound basis to develop further

higher-level services such as the DAG-Man/SRB application (section 4.2) to assist the users in

achieving their goals.

References

[1] Wells, S., Alfredsson, M., Bowe, J., Brodholt, J., Bruin, R., Calleja, M., Catlow, R., Cooke, D.,

Dove, M., Du, Z., Kerisit, S., de Leeuw, N., Marmier, A., Parker, S., Price, D., Smith, B., Spohr,

H., Todorov, I., Trachenko, K., Wakelin, J., Wright, K. Science outcomes from the use of Grid

tools in the e-minerals project, Proc. Of the All Hands Meeting 2004, Nottingham, 2004.

[2] Garcia, A., Murray-Rust, P. and Wakelin, J., The use of XML and CML in Computational

Chemistry and Physics Programs, Proc. Of the All Hands Meeting 2004, Nottingham, 2004.

[3] Blanshard, L., Brodholt, J., Bruin, R., Calleja, M., Chapman, C., Dove, M., Emmerich, W., Kleese

van Dam, K., Tyer, R., and Wilson, P., Grid tool integration within the e-Minerals project, Proc.

Of the All Hands Meeting 2004, Nottingham, 2004.

[4] The Globus Project, 2003. http://www.globus.org/toolkit

[5] Foster, I., Kesselman, C., Globus: A Meta-computing Infrastructure Toolkit, Intl J. Supercomputer

Applications, 1997

[6] Livny, M., Miller, K., Tannenbaum, T. and Wright, D. Condor - A Distributed Job Scheduler, in

Thomas Sterling, editor, Beowulf Cluster Computing with Linux, The MIT Press, 2002.

[7] Condor Team, Condor Version 6.7.0 Manual. University of Wisconsin-Madison, 2003.

http://www.cs.wisc.edu/condor/manual/v6.7/

[8] Murray-Rust, P. and Rzepa, H. Chemical markup, XML and the World-Wide Web. 2. Information

objects and the CMLDOM. J. Chem. Inf. Comput. Sci, 2001.

[9] Chapman, C., Wilson, P., Tannenbaum, T., Farrellee, M., Livny, M., Brodholt, J., and Emmerich,

W., Condor Services for the Global Grid: Interoperability between OGSA and Condor, Proc. Of

the All Hands Meeting 2004, Nottingham, 2004.

[10] HPCxm Capability computing, documentation.

http://www.hpcx.ac.uk/support/documentation/index.html

[11] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,

Smith, D., Thatte, S., Trickovic, I., Weerawarana, S., Business Process Execution Language for

Web Services, Specification v1.1, 2003,

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

[12] San-Diego Super Computing, Storage Resource Broker Documentation,

http://www.npaci.edu/dice/srb/docs.html

[13] Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integration. Globus Project, 2002.

[14] Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D., Leymann, F., Nally, M.,

Sedukhin, I., Snelling, D., Storey, T., Vambenepe, W., Weerawarana, S. Modelling stateful

resources with Web Services, Version 1.1, IBM, 2004

