
Simple Grid Access using the

Business Process Execution Language*

Clovis Chapman
1
, Andrew M. Walker

2
, Mark Calleja

3
,

Richard P. Bruin
2
, Martin T. Dove

2
 and Wolfgang Emmerich

1

1
 Dept. of Computer Science, University College London,

Gower St, London WC1E 6BT, United Kingdom
2
 Dept. of Earth Sciences, University of Cambridge,

Downing Street, Cambridge CB2 3EQ, United Kingdom
3
 Cambridge eScience Centre, Centre for Mathematical Sciences,

University of Cambridge, Wilberforce Road, Cambridge CB3 0EW

Abstract

Scientists require means of exploiting large numbers of grid resources in a fully integrated manner

through the definition of computational processes specifying the sequence of tasks and services they

require. The deployment of such processes, however, can prove difficult in networked environments,

due to the presence of firewalls, software requirements and platform incompatibility. Using the Business

Process Execution Language (BPEL) standard, we propose here an architecture that builds on a

delegation model by which scientist may rely on middle-tier services to orchestrate subsets of the

processes on their behalf. We define a set of inter-related workflows that correspond to basic patterns

observed on the eMinerals minigrid. These will enable scientists to incorporate job submission and

monitoring, data storage and transfer management, and automated metadata harvesting in a single

unified process, which they may control from their desktops using the Simple Grid Access tool.

1. Introduction

As grid infrastructures evolve and offer an

increasingly important amount of resources and

services, it becomes clear that scientists are

suffering from physical and software restrictions

not addressed by current-generation grid

middleware and tools. Scientific processes, such as

those defined by the scientists of the eMinerals

project [1], involve a large number of services and

resources, such as job execution services, data

stores, visualisation services, etc., and potentially

complex interactions between these. The realities

of networked heterogeneous environments make

the deployment of such processes an extremely

difficult task: firewalls, platform incompatibility,

software and resource requirements, security, etc. -

all these elements can stop the average user from

launching and coordinating complex computational

processes from their desktops and/or applications

of their choice. Ensuring that scientists can retain

their current working environments and

applications, with minimal or no change, is key to

facilitating the transfer to grid environments and

enabling the step change in the research that this

provides. Existing grid middleware can prove

difficult to install, configure and use, and hardly

provides the level of integration required to

seamlessly incorporate a wide range of services

into a unified process.

We have had the opportunity to work on the

deployment of several scientific workflows on the

eMinerals minigrid [2]. While the scientific goals

of these processes may differ, they present several

similarities and common requirements.

Specifically, they require batch job submission and

monitoring primitives, the ability to store and

retrieve large amounts of produced data and finally

the ability to organize and index this data through

the definition of corresponding metadata.

The approach that we adopt here is to decompose

large scientific processes into a collection of basic

patterns that can be fully automated and delegated

to third party VO-wide systems, which will

orchestrate the execution of these subsets of the

process on the user’s behalf.

We propose an architecture that builds on this

delegation model, relying on the Business Process

Execution Language (BPEL) [3] and other Web

Service tools and standards, such as GridSAM and

the Job Submission Description Language (JSDL)

* Research presented has been funded by NERC through

Grant reference numbers NER/T/S/2001/00855,

NE/C515698/1 and NE/C515704/1 (eMinerals).

Proceedings of the UK e-Science All Hands Meeting 2006, © NeSC 2006, ISBN 0-9553988-0-0

377

[4], to provide VO-wide orchestration and service

provision. The increased adoption of Web Services

by the Grid community makes the use of this

industry-led standard in a Grid environment very

appealing: BPEL is an orchestration language,

enabling us to build services whose role is to

coordinate interactions between Web Services

according to specified workflows on a client’s

behalf.

The architecture relies on the definition and

deployment of a number of predefined workflows

that correspond to basic patterns observed in our

minigrid. Scientists may trigger the execution of

these workflows remotely through a lightweight

self-contained client.

For this purpose, we have implemented the Simple

Grid Access (SGA) tool: a lightweight, self-

contained java-based tool, that enables users to

launch job executions and manage submissions

from their desktop, including transferring files to

and from storage vaults and uploading proxy

certificates. SGA can be used directly or

incorporated within other applications as an

external process, providing users with means of

composing more complex workflows at a more

abstract level; with applications, tools and

languages of his choice – such as simple batch

scripting. Alternatively, focus on reusability

ensures that users can incorporate our workflows

into larger BPEL workflows.

2. Deploying workflows on the

eMinerals minigrid

2.1 Scientific workflow requirements

Scientific problems will require the definition of

computational processes usually involving the

execution of several data management and

computational tasks. As an example, we refer to

previous work [6], where we tackled the problem

of distributing the computations required to study

the adsorption of pollutant molecules on a

pyrophyllite surface on the e-Minerals minigrid.

The eMinerals is a production level infrastructure

encapsulates a wide range of resources across 6

sites in the UK.

It provides essentially 3 categories of services:

- Compute resources: consisting of number High

Performance Computing (HPC) and High

Throughput Computing (HTC) resources. These

are typically fronted by Globus 2.4 [5]

- Data Storage resources: we rely on the SDSC

Storage Request Broker (SRB), to provide

seamless access to distributed data resources,

with a total capacity of 3 terabytes spread across

5 storage vaults.

- Metadata annotation service (Rcommands): This

service [10] provides means of storing,

generating and searching metadata for files

stored in SRB vaults to facilitate the indexation

and re-use of data.

The number of resources and their geographical

distribution clearly highlights the difficulty in

deploying and managing complex workflows on

such an infrastructure.

The various sites are independently administrated

and protected by institutional and/or departmental

firewalls. Users also require a certain number of

tools, at the very least the Globus toolkit, Condor-

G (for job scheduling capabilities), the

RCommands front end tools and finally SRB tools

for data storage and retrieval. Installation,

configuration and maintenance can prove tedious,

particularly where administrative access to the

machine is not available.

However, a key observation that we have made

during our work on workflow deployment is that

scientific processes can be decomposed into a

number of basic patterns, which take advantage of

our services in a unified manner. For each

individual job, we require:

- The selection of a target compute resource

Figure 1: Hierarchical workflow patterns

Proceedings of the UK e-Science All Hands Meeting 2006, © NeSC 2006, ISBN 0-9553988-0-0

378

- The retrieval and staging of data from our

storage resources onto the target resource

- The submission and execution of the job

- The storage of the produced data

- Finally, the automated harvesting of metadata

from the produced output, and its storage.

As part of the process, these various stages require

fault-handling capabilities and monitoring of state

changes. This in itself constitutes a relatively

complex but reusable workflow unit (illustrated in

figure 1) that can be interleaved with desktop

processes, such as retrieving user input for steering

purposes, or input and output processing.

The complexity and resource requirements of such

a process means that its management and execution

is best left to a third party with sufficient resources,

for which we rely on the Business Process

Execution Language (BPEL).

2.2 The Business Process Execution Language

BPEL aims to enable the orchestration of Web

Services, by providing means of composing a

collection of Web Service invocations into an

executable workflow, itself presented as an

invocable Web Service.

Much work has been invested in the development

of Web Service compliant grid middleware. For

example, web service based job submission tools

such as GridSAM have been developed, providing

a standard job interface to underlying resource

management systems such as Condor.

BPEL allows us to specify the process to execute

upon request as an XML document. It provides

support for controlled flow elements, including

sequential or parallel executions, conditional

executions, variables, fault handling and XPath and

XSLT queries.

Once a workflow has been specified, a BPEL

engine will be responsible for orchestrating the

workflow on a user’s behalf, acting as a

middleman between resources and client. Such an

approach also provides us with the advantage that

the BPEL workflow can be modified independently

from the users, considerably easing administration

and enabling the transparent addition of new

resources and services. Web Services also provide

better support for firewalls, by allowing session

management over a single port.

3. Implementation

Our implementation is illustrated in figure 2. For

job specification, we rely on the Job Submission

Description Language (JSDL), an emerging XML

based GGF standard [9].

Orchestration Service: At the core of our system

we rely on one or more BPEL engines to provide

and manage the execution of workflows as

specified in section 2.1. We use for this purpose

the open source Active BPEL engine to deploy

workflows. These workflows, deployed as

executable Web Services, will present an interface

for clients to submit JSDL documents and

corresponding data requirements, and, upon receipt

of such a document, will manage the invocations of

the various required services.

The Active BPEL engine also provides graphical

Web based monitoring tools, providing a detailed

view of the execution process, which will ensure

that users can check on the progress of their jobs,

whilst keeping the client-side tools as light as

possible.

Simple Grid Access (SGA) tool: The SGA tool is

our self-contained client tool that we have

implemented to allow users to specify their job

requirements and generate corresponding JSDL

and data requirements specifications for

submission to a BPEL engine.

We favor here a simple command line interface,

which will allow users to specify the various

requirements of the job (input files, executables,

etc.) as a sequence of arguments, as well as

allowing additional attributes (proxy server

descriptions etc.) to be obtained from a

configuration file, in a predefined location or from

local environment settings.

The client also provides additional data staging

capabilities. Because client side inbound

connections are rarely available, it enables users to

upload required files to the SRB vaults before job

submission if required through HTTP - as we will

explore below, as well as making files to be made

available through a variety of means (FTP, HTTP).

Files can also be returned to the user’s desktop

upon job completion. Finally, it also allows users

to generate a certificate proxy, which will be

uploaded to a credential management service (i.e.

myProxy [13]) of the user’s choice. Once data and

proxy requirements have been handled, the client

will invoke the orchestration services to orchestrate

the execution of the workflow.

The client has been implemented in Java, ensuring

that it will be compatible with most platforms,

using the CoG kit [11], Apache Axis [12], Apache

HttpClient and other libraries.

Proceedings of the UK e-Science All Hands Meeting 2006, © NeSC 2006, ISBN 0-9553988-0-0

379

Meta-scheduling: We rely here on previous work

in which we created a plug-in for the GridSAM job

submission service to support submissions to

multiple Condor pools, or Globus managed clusters

through Condor’s Web Service interface [8],

effectively transforming GridSAM into a complete

metascheduling service. GridSAM also provides

support for JSDL, and myProxy, facilitating its

integration into the system.

Data Transfer and services: While Web Services

are used to control the data transfers, the actual

transfer of data is handled through HTTP, in order

to avoid the overhead of SOAP based invocations.

For this purpose, we have written a front end

wrapper over the SRB tools using CGI that

facilitates interaction with the SRB data vaults

through HTTP.

Alongside this, we have created a Web Service that

will facilitate the remote coordination of transfers

between third parties and can be deployed on target

resources. The reasons for adopting HTTP are

obvious: they facilitate the upload of files for

clients in the presence of firewalls, and also enable

them to access files through their browser.

Metadata collection: The interface provided by

the RCommands Web Service provides means of

adding, editing and removing new data sets and

studies associated with a particular file, and its

physical location (on the SRB).

In addition to basic submission details, detailed

information about the data can be obtained by

parsing the output files, particularly in

XML or CML [7]. We have created

an additional metadata collection Web

Service that will be responsible for

identifying elements of interest given

an appropriate RDF file and a suitably

rich ontology, relying on the AgentX

framework [10].

4. Conclusion

We have begun the process of

incorporating the SGA tool into

existing workflows and tools used by

our scientists.

In particular, we have incorporated

SGA into GDIS (GTK Display

Interface for Structures), an open

source program that allows scientists

to visualise molecules, crystals and

crystal defects in three dimensions and at the

atomic scale [14]. GDIS can act as an interface to

create code input and run the simulations on the

local machine. By enabling GDIS to invoke our

SGA tool, we can now launch calculations onto our

minigrid, and take advantage of all our services,

with little change to the original code base.

References

1. Dove, M. et al., Environment from the molecular level: an

escience testbed project. Proc. of All Hands Meeting,

Nottingham, 2003

2. Blanshard, L. et al., Grid tool integration within the

eMinerals project, in Proc. Of the All Hands Meeting

Nottingham, 2004.

3. Andrews, T. et al., Business Process Execution Language for

Web Services Version 1.1 OASIS, 2003.

http://ifr.sap.com/bpel4ws.

4. The GridSAM project. http://www.lesc.ic.ac.uk/gridsam/

5. The Globus Project. http://www.globus.org/

6. White, T. et al., eScience methods for the combinatorial

chemistry problem of adsorption of pollutant organic molecules

on mineral surfaces, in Proc. Of the All Hands Meeting,

Nottingham, 2005.

7. Murray-Rust, P. et al., Chemical Markup Language and XML

Part I. Basic principles, J. Chem. Inf. Comp. Sci., 39, 928, 1999.

8. Chapman, C. et al. , Condor Birdbath - web service interface

to Condor, in Proc. of the All Hands Meeting, Nottingham,

2005.

9. Anjomshoaa, A., et al., Job Submission Description

Language Specification v1.0, GFD #: GFD-R-P.056, 2005.

10. Tyer, R. P., et al., Automatic metadata capture and grid

computing, in Proc. of the All Hands Meeting, Nottingham,

2006.

11. Java Cog Kit http://wiki.cogkit.org/

12. Apache Software Foundation. http://www.apache.org/

13. MyProxy http://grid.ncsa.uiuc.edu/myproxy/

14. Fleming, S., and Rohl, A., GDIS: a visualization program

for molecular and periodic systems, Z. Krist. 200 580, vol.220

pp.580-584, 2005.

Figure 2: Implementation

Proceedings of the UK e-Science All Hands Meeting 2006, © NeSC 2006, ISBN 0-9553988-0-0

380

