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Abstract

We report a pragmatic approach for metadata management developed by the eMinerals 
project and which enables non-intrusive automatic metadata harvesting from grid-
enabled simulation calculations. The framework, called the RCommand framework, 
gives users a set of unix line commands and a web interface to the metadata database. 
Harvesting of metadata relies on the use of XML for output data file representation, and 
new developments of the RMCS grid job submission tool incorporating the AgentX 
library. We report the use of the Rgem tool to use metadata as a direct interface to data to 
enable collation of data obtained from parameter-sweep grid studies.

1. Introduction
This paper describes a set of tools developed by 
the eMinerals project to facilitate metadata 
management and automatic harvesting of 
metadata from computer simulations. The key 
design requirements have been to ensure that 
the tools should be non-intrusive for the users, 
pragmatic in their design, and functionality that 
will tempt scientists to adopt them into their 
regular work patterns.

Metadata is of value to simulation scientists 
for a number of reasons. First,  metadata enables 
scientists and their collaborators to identify the 
information content of a set of data files without 
needing to download them from where they are 
stored or archived (we discuss the data grid 
aspects later). It is not necessarily the case that 
output data files contain sufficient information 
to enable even the owner to properly identify 
the information content sufficiently; the exercise 
of generating metadata may actually force many 
code developers to think seriously about the 
issues of the vital supplementary information 
that should be provided along with the key 
output results. Second,  metadata enables 
researchers and their collaborators to locate data 
files relatively easily,  through directed searches 
or browsing through the metadata. Like the first 
point,  the usefulness is critically dependent on 
the quality of the metadata. Third, metadata can 
provide a primary interface to data, which is one 
of the features that is particularly important for 
large data sets generated using grid computing 
methods. This is important both for the 
originator of the data and also for collaborators.

It is useful at this point to give a practical 
example. The eMinerals project, through which 
this work is being carried out, has a strong focus 
on studying environmental processes at a 
molecular level using a range of atomistic 
simulation methods (such as quantum 
mechanical tools and large-scale classical 
molecular dynamics methods). One study 
concerns molecular pollutants on mineral 
surfaces. In the case of the polychlorobiphenyl 
(PCB) system, chemical formula C12H10–xClx, 
we are aiming to compare the energies of all 
210 congeners (molecules with different values 
of x and different positions of the atoms) in 
isolation and in contact with a mineral surface, 
together with repeat calculations using different 
simulation models. Metadata is used to 
document the exact conditions of each 
simulation, effectively replacing the role of the 
logbook or README file; while these sufficed 
for a scientist working on a limited number of 
simulations, they fail when faced with the 
massive increase in capacity of these studies 
enabled by access to grid computing. This 
information enables collaborators to quickly 
understand the details of the various 
calculations, and to find the location of the data 
files. The metadata also enables collaborators to 
search for data files that match certain 
conditions, such as type of atomic basis set (i.e. 
the numerical description of the electronic wave 
function), or the orientation of a mineral 
surface, or even to search for the molecules or 
crystal faces with the lowest binding energies. 
Finally, when quantities such as the value of the 
energy for each run are stored as metadata,  it is 



relatively easy to use our tools to collate the 
data for subsequent analysis.

In this paper we will describe the approach 
to metadata capture and management developed 
within the eMinerals project. We will give an 
outline of the broader context first, and then will 
describe the RCommand framework and client 
tools. We will discuss these are used for 
metadata collection, and will outline the 
important role of XML file representation. We 
will conclude with two case studies.

2. The eMinerals computing and data 
environment
The eMinerals project has focussed on 
developing grid computing infrastructures for 
simulation sciences [1]. Our approach has been 
to  integrate grid computing (based on clusters 
and Condor pools) with grid data management 
methods based on the San Diego Storage 
Resource Broker (SRB). To make the interactive 
with the compute grid as easy to use as possible 
we have developed the RMCS tool for grid job 
submission; this is a web services wrapping of 
our established my_condor_submit tool. Users 
provide RMCS with a Condor-like set of 
directives within a single file, which control 
issues such as job metascheduling, locations of 
the collections on the SRB that contain input 
files and applications and where output files 
should be placed, and, most recently, how 
metadata are to be collected (discussed below). 

Although we are currently using the SRB for 
data management (archiving, staging and 
sharing), we have chosen to not be specifically 
tied to the SRB for all data transactions and 
hence also for metadata management. For 
example, we are also experimenting with 
webdav based data grid approaches, and other 
users may want to have metadata tied to files 
stored on FTP or HTTP servers. Thus our 
metadata tools need to be decoupled completely 
from the specific data grid solutions we are 
using. This mitigated against using the SRB’s 
metadata tools as our primary metadata 
infrastructure. 

3. Metadata in the eMinerals project

3.1 Metadata organisation model
The model we use has three levels within which 
metadata are organised, Figure 1. The top level 
is the study level, which is self-explanatory. It is 
possible to associate named collaborators with 
this level, enabling collaborators to view and 
edit the metadata within a study. The next level 
is the dataset level. This is the most abstract 
level, and users are free to interpret this level in 
a variety of ways. Examples are given in Table 
1. The third level is the data object level.  This is 
the level that is associated with a specific URI, 
such as the address of a file or collection of files 
within the SRB, or an HTTP or FTP URL. The 
data object may be the files generated by a 
single simulation run, and/or the outputs from 
subsequent data analysis. In combinatorial or 
ensemble studies, it is anticipated that there will 
be many data objects associated with a single 
dataset, and it is the dataset level at which 
different types of calculations within a single 
study are organised.

This hierarchy of levels provides a high 
degree of flexibility for the individual scientists, 
each of whom will tailor it with for different 
work patterns. Some scientists may generate a 
large number of study levels, whereas other 
scientists might put all their work into one 
study. We remark that our tools can attach 
metadata to each of the three levels.

Dataset

Data object

Study

Figure 1. Graphical representation of the three 
metadata levels.

Study Molecular dynamics simulation of silica 
under pressure

Ab initio study of dioxin molecules on 
clay surface

Data set Identified by the number of atoms in the 
sample and the interatomic potential 
model used

Identified by number of chlorine atoms in 
the molecule and the specific surface site

Data object Collection on the SRB containing all input  
and output files

Collection on the SRB containing all input  
and output files

Table 1. Examples of how the study / dataset / data object levels have been used to organise data.



3.2 Metadata to capture
Typically it is expected that metadata 
associated with the study and dataset 
levels will be added by hand, with the 
automated metadata capture to be 
provided at the data object level 
(although we provide tools for metadata 
to be automatically captured for 
datasets). We define five types of 
metadata to capture:
Simulation metadata: information such 

as the user who performed the run, 
the date, the computer run on etc.

Parameter metadata: values for the 
parameters that control the 
simulation run, such as temperature, 
pressure, potential energy functions, 
cut-offs, number of time steps etc.

Property metadata: values of various 
properties calculations in the 
simulation that would be useful for 
subsequent metadata searches, such as final 
or average energy or volume.

Code metadata: information that the code 
developers deemed useful when creating the 
code to enable users to determine what 
produced the simulation data, such as code 
name, version and compilation options.

Arbitrary metadata: strings that the user deems 
important when running the study to enable 
later indexing into the data, such as whether 
a calculation is a test or production run.

4. The RCommand metadata 
framework

4.1 Architecture
The metadata framework we have developed is 
based on a three-tied architecture, as shown in 
Figure 2. The three tiers are:
Client: The client layer seen by most users is a 

set of binary tools written in C using the 
gSOAP library (the RCommands shell tools 
described below). The motivation for using 
C was the requirement that the tools be as 
self-contained as possible so they can easily 
be executed server side via Globus. Other 
client tools can be built onto this layer.

Application Server: The application server is 
written in Java using Axis as the SOAP 
engine and JDBC for database access. The 
code essentially maps from procedural web 
service calls to SQL appropriate for the 
underlying database [2].

RDBMS: The backend database is served by a 
Oracle 10g RAC cluster. Although Oracle is 
used, there is no requirement for any Oracle 
specific functionality.

One of the main reasons for using a three tier 
model is that the backend database is behind a 

firewall and thus cannot be accessed directly 
from client machines. The application server 
provides the interface between the user’s tools 
and the metadata database. SOAP messages are 
sent to the application server from the cient 
tools via SSL-encrypted HTTP. The application 
server is authenticated using its certificate while 
the client requests are authenticated using 
usernames and passwords. 

The use of web service technology is 
advantageous as it allows all the network related 
code to be auto-generated. On the server, the 
Axis SOAP engine is configured to expose 
specified methods of certain classes as RPC 
web services. The corresponding client code is 
generated on the fly by gSOAP from the WSDL 
file produced by Axis. In addition to the rapid 
development afforded by the use of web 
services, there is an additional requirement to 
allow the server side functionality to be 
exploited by members of the project interested 
in web services workflows [3].

4.2 The RCommand shell tools
We have developed a set of scriptable unix line 
commands as the primary client interface to the 
metadata database. These enable users to that 
perform functions such as uploading metadata 
to the metadata database,  and listing metadata 
items. The various comments, which we 
colloquially call the RCommands, are defined in 
Table 2. To use these commands, the user needs 
a directory called .rcommands, which 
contains a configuration file with information 
about the user’s metadata account and the 
location of digital certificates.

4.3 Metadata Manager: the web interface 
to the metadata database
The RCommand shell commands were initially 
written to provide tools that can be used in 

Figure 2. The three-tier architecture of the RCommand 
metadata framework.



scripts, but nevertheless they give scientists a 
useful interface to the metadata database. 
However, there are cases when a web interface 
is better, particularly when requiring a graphical 
overview that cannot be provided by a unix 
shell interface. We have developed a web 
interface to the metadata data based called the 
Metadata Manager (MDM, Figure 3). This 
provides an initial overview of the study level, 
from which the user can drill down into the 
various layers. The user can perform a number 
of the functions that are provided by the 
RCommand shell tools.

Although some users have clear preferences 
for either portal interfaces or command line 
tools, it is more natural to use a web interface 
for the high level (study) metadata and the 
command line tools via scripts for the fine 
grained (parameter) metadata. However, the 
same functionality is exposed via the portal, 
web service API and command line tools. This 
allows the users the flexibility to fit the 
metadata functionality into their preferred 
working paradigm, rather than requiring the 
user to adopt their working methods to fit into 
the technology.

The MDM design uses the JSP Model 2 

architecture, which is based on the Model-View-
Controller (MVC) pattern. The majority of the 
code in the Model layer is common to both the 
RCommand shell tools and the MDM. Hence, as 
with the shell tools, the database connectivity is 
provided using the JDBC libraries.

5. Collecting metadata

5.1 The role of XML in output files
Much of the metadata we collect is harvested 
from output data files.  To facilitate this, we have 
enabled our key simulation programs to write 
the main output files in XML. Specifically we 
use the Chemical Markup Language [4]. The 
vast majority of our simulation codes have been 
written in Fortran, and we have developed a 
Fortran 95 library called FoX to provide 
routines for writing well-formed XML [4].

CML specifies a number of XML element 
types for representing lists of data. We make use 
of three of these:
metadataList: This list contains certain 

general properties of the simulation, such as 
code version;

parameterList: This list contains 
parameters associated with the simulation;

RCommand Action

Rinit Starts an RCommand session by setting up session files

Rpasswd Changes the password for access to the metadata database

Rcreate Creates study, dataset and data object levels, associating the lower levels with the 
level immediate above, adding a name to each level, adding a metadata description 
and topic association in the case of creating a study, and associating a URI in the 
case of creating a data object.

Rannotate Adds metadata. In the case of studies or datasets, this enables a metadata 
description, and in the case of datasets and data objects it also enables metadata 
name/value pairs. It also enables more topics to be associated with a study.

Rls Lists entities within the metadata database. With no parameters, it lists all studies, 
and with parameters it will list the entries within a study or dataset level. It can also be 
used to list all possible collaborators or science topics.

Rget Gives the metadata associated with a given study, dataset or data object. In the case 
of a study, it can also list associated collaborators and science topics.

Rrm Removes entities or parameters from the metadata database.

Rchmod Add or remove co-investigators from a study.

Rsearch Search the metadata database, tuned to search within different levels and against 
descriptions, name/value pairs and parameters.

Rexit Ends an RCommand session, cleaning up session files.

Table 2. The ten RCommand unix line commands.



propertyList: This list contains properties 
computed by the simulation.

It is usual to have more than one of each list, 
particularly the propertyList. Clearly these 
lists correspond closely to the metadata types 
described earlier in this paper.  Examples are 
shown in Figure 4.

5.2 Automatic metadata capture within a 
grid computing environment
As described in the introduction, the eMinerals 
project scientists run their simulations within 
the eMinerals minigrid using the RMCS tool [1]. 
This is a generic tool that will work on any 
compute grid infrastructure that has Globus and 
the SRB and metadata client tools installed (eg 
the National Grid Service).

As noted above, RMCS has a Condor-like 
interface for the user. It has the standard Condor 
commands for running jobs, with additional 
commands for managing data within the SRB. It 
now has additional commands for accessing the 
metadata database.

Here we give a brief introduction to the 
metadata capture processes. RMCS deals with 
four different types of metadata capture:
1. An arbitrary text string specified by the user.

2. Environment metadata automatically 
captured from the submission and execution 
environment including details such as 
machine names, submission and completion 
dates, executable name, etc.

3. Metadata captured is extracted from the first 
metadataList and parameterList 
elements described in the previous section.

4. Additional metadata extracted from the 
XML documents. These specifications take 
the form of expressions with a syntax similar 
to XPath expressions. These are parsed by 
MCS and broken down into a single term 
used to provide the context of the metadata 
(such as ‘FinalEnergy’) and a series of 
calls to be made to the AgentX library [5].

The AgentX library calls, made from RMCS as a 
result of the user specified metadata 
expressions, query documents for data with a 
specific context.  For example, AgentX could be 
used to find the total energy of a system 
calculated during a simulation. In this case 
(Figure 5),  the user specified expression might 
have the form:
AgentX = FinalEnergy, 

output.xml:PropertyList

Figure 3. Screen shots of the 
Metadata Manager portal



[title='rolling 
averages'].Property
[dictRef='dl_poly:eng_tot'].value

The term providing the name of the metadata 
item is 'FinalEnergy' and the document to 
be queried is output.xml. The string 
following ‘output.xml:’  is parsed by 
RMCS and converted to a series of AgentX 
library calls. In this example, AgentX is asked 
to locate all the data sets in output.xml that 
relate to the concept ‘property’  and which 
have the reference ‘dl_poly:eng_tot’  (the 
average energy of a system in the context of the 
DL_POLY simulation code). The value of this 
property is extracted and associated with the 
term FinalEnergy.  The RCommand shell 
tools are then used to store this name-value pair 
in the metadata database.

AgentX works with a specification of ways 
to locate data in documents (such as a CML 
document) that have a well defined content 
model. There are two components to the 
AgentX framework: 
1. An ontology that specifies terms relating to 

concepts of interest in the context of this 
work.  These terms relate to classes of real 
world entities of interest and to their 
properties. The ontology is specified using 
the Web Ontology Language (OWL) and 
serialised using RDF/XML. The Protégé 
Ontology Editor and Knowledge Acquisition 
System has been used for its development. 

2. The second component is the mappings, 
which are used to relate terms in the ontology 

to document fragment identifiers. For XML 
documents, these fragment identifiers are 
XPointer expressions that may be evaluated 
to locate data sets and data elements in the 
documents. Each format is associated with its 
own set of mappings, and a set has been 
developed for eMinerals use of the Chemical 
Markup Language.  The mappings are also 
serialised using RDF/XML. 

AgentX is able to retrieve information from 
arbitrary XML documents, as long as mappings 
are provided. Such mappings exist for a number 
of codes (e.g. VASP, SIESTA and DL_POLY), 
and the number of concepts involved is being 
increased. In addition, mappings are under 
development for other codes.

Because the content of the data, for 
AgentX’s purposes, resides entirely in the 
mapping between the concepts and the 
document structure (rather than solely in the 
structure itself), we have been able to design a 
more efficient representation for large datasets 
(such as DL_POLY configurations containing 
more than 106 atoms) at the expense of losing 
the contextual information from the document 
itself compared to standard XML.

5.3 Post-processing using the RParse tool
Although by design of its implementation, 
XML output will capture all information 
associated with the inputs and outputs of a 
simulation, it is inevitable that the automatic 
tools may miss some of the metadata.  The 
nature of research work dictates that it is not 
always obvious at the start of a piece of work 
what properties are of most interest.  Thus we 

<?xml version="1.0" encoding="UTF-8"?>
<cml xmlns="http://www.xml-cml.org/schema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<metadataList>
 <metadata name="identifier" content="DL_POLY version 3.06 / March 2006"/>
</metadataList>

<parameterList title="control parameters">
 <parameter title="simulation temperature" name="simulation temperature"
 dictRef="dl_poly:temperature">
 <scalar dataType="xsd:double" units="dl_polyUnits:K">50.0</scalar>
 </parameter>
</parameterList>

<propertyList title="rolling averages">
 <property title="total energy" dictRef="dl_poly:eng_tot">
 <scalar dataType="xsd:double" units="dl_polyUnits:eV_mol.-1">-2.7360E+04
   </scalar>
 </property>
</propertyList>

</cml>

Figure 4. Extracts of a CML output file, showing examples of the metadataList, 
parameterList and propertyList containers.



have developed a tool to scan over the 
XML files contained within the data 
objects in a single dataset to extract 
metadata based on CML parameters.

The Rparse tool allows automatic 
metadata ingestion after the 
simulation has finished and the data 
have been stored within the datagrid. 
The tool will trawl specified 
collections within SRB space, download key 
XML output files and harvest metadata for the 
user. This metadata is then inserted into a 
specified study/dataset within the metadata 
database along with the URI pointing to the 
relevant datafile within the SRB. This 
functionality is achieved by using the 
Scommands (SRB unix shell client tools), the 
RCommand shell tools, and the AgentX library. 
The user needs to specify a root collection in 
SRB, output files of interest, AgentX query 
expressions, and the dataset into which the 
metadata is to be inserted. Using this tool,  it has 
been possible to automatically insert metadata 
for hundreds of XML files that where generated 
prior to the MCS metadata functionality being 
available.

6. Metadata as a primary interface to 
data
In the introduction we cited three uses of 
metadata. The first two of these, namely to 
provide information about data and to locate 
data, are common reasons for collecting good 
metadata, and the tools we have described 
above work well for this. The third reason is to 
provide a primary interface to data, and we now 
describe what this means together with a tool 
we have developed for this.

Let us consider the example of a study in 
which we compute properties of a material, such 
as energy or volume, for many different 
temperatures. The computations for each 
different temperature are performed as separate 
jobs on different grid resources, and each has its 
own set of output files (including the CML 
output file) stored in different collections within 
the SRB or another data archive. The task facing 
the researcher is to collate all the data to 
produce a table of energy and volume as a 
function of temperature.  The traditional 
approach is to scan over all the output files to 
extract the input temperature and the final or 
average values of energy and volume. The main 

overhead for the researcher is to download all 
the files from the data grid and manage the data 
locally.  However, the task of scanning the 
output files for the core information was already 
performed with the collecting of metadata, 
either at the time of creation within the RMCS 
process or subsequently using the Rparse tool, 
and the metadata database is playing the role of 
a cache for these data items.

We have developed a tool, called Rgem, that 
uses the codebase of the RCommands, to scan 
over the metadata associated with a set of data 
objects contained within a dataset and extract 
output parameter values from the metadata 
database. In the above example, the user would 
tell Rgem to collate the values of temperature, 
energy and volume from the metadata 
associated with all data objects within a given 
dataset. Rgem then returns a table of data in 
space-separated format, which the user can 
either copy into a file or import into an analysis/
visualisation application.

Rgem has a significant impact in the 
usability of grid resources. The task of 
accurately collating all the core output values 
from parameter-sweep studies is not trivial to 
set up and run, but Rgem is sufficiently general 
that using the metadata as the interface to the 
data reduces this task to running a single shell 
command, and the results are returned to the 
user nearly instantaneously.

7. Case study 

7.1. Cation ordering in silicates
The process of cation ordering in layer silicates 
(such as clays) is performed using the Monte 
Carlo method, with one simulation of each 
temperature performed on a separate grid 
resource. We collected as metadata input 
parameters such as temperature, system size, 
number of steps, and interatomic interaction 
parameters, and output average values such as 
energy, heat capacity, short-range and long-
range order parameters. The simulations were 
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Figure 5. Example of one data set 
obtained using the Rgem command; in 
this case we plot the short-range order 
for cation ordering in a layer silicate 
as a function of temperature.



performed as a collaboration between two of the 
authors, who are based in different institutes. 
The metadata were used to enable the two 
collaborators to understand in detail the 
different runs each other had performed (e.g. 
when changing the system size). This is an 
example where Rgem was used to collate tables 
of output data from the metadata. An example 
result is shown in Figure 5; the number of 
points on the graph shows the extent of the data 
collation problem.

7.2. Simulation studies of organic 
molecules on mineral surfaces
As discussed in the introduction, we are running  
detailed studies of the adsorption of organic 
pollutant molecules on mineral surfaces. We run 
a script to create all the input files for the 
optimisation of a given set of molecules (using a 
quantum mechanics code), the docking of these 
molecules onto a chosen surface and the 
calculation of the basis set superposition error 
(BSSE).  At each step the input files are 
uploaded onto the eMinerals data grid before 
the calculation is scheduled to run using RMCS. 
Throughout this process metadata are added to 
the metadata database.

In this example, we deposit all data objects 
in a single data set and a single study. As well as 
simplifying scripting by reducing the number of 
logical locations that must be stored and used to 
set up calculations, this provides a useful test of 
the database search capability. Data objects are 
created in two ways.  For each set of input data 
created a data object is created by calling the 
RCommand shell tools from the desktop 
resource. This object points to the SRB 
collection that contains the input files, and 
includes the time and date of creation, the 
reason for the run (molecule optimisation in 
vacuum, relaxation on a surface, or one of 
several calculations needed to correct for the 
BSSE) and the fact that the job has been 
submitted. The second data object is created by 
RMCS on successful completion of the 
calculation. This data object is related to the 
results of the calculation and points at a 
collection in the SRB where these results reside 
(in principle this could be the same collection as 
the input files, but to avoid pollution of the 
input we create a sub collection called “results” 
for each calculation). Metadata stored at this 
stage includes the environment where the job 
ran and key parameters of the calculation 
collected from the XML output of the run.

8. Summary points
‣ We have developed a production-level 

infrastructure that integrates data,  compute 
and metadata functionality. At the heart of this 

metadata functionality is the RCommand 
scriptable shell tools for metadata 
manipulation. These tools,  coupled with the 
RMCS framework and AgentX, have enabled 
the automatic harvesting of metadata with no 
additional overhead for the scientists. 

‣ We have provided portal and client tools to 
allow the users to search and manipulate their 
metadata. The use of a web service API for 
the server side components has further 
enabled the metadata functionality to be 
integrated into existing client tools with 
minimal effort.

‣ We have shown that the metadata database 
can be automatically populated with little 
effort and in a non-intrusive way.

‣ While there is a clear semantic difference 
between metadata and data, some of our 
experience suggests that for practical 
purposes it is sensible to blur the distinction. 
For example, using a final energy of –1.15 
eV as metadata enables the user to search for 
datasets with energies lower than –1 eV.

‣ The Rgem tool enables researchers to use the 
metadata as a primary interface to data, 
enabling them to easily collate data from 
many separate jobs within a parameter-sweep 
study performed on a compute grid 
infrastructure.
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