
Metadata management and grid computing within the
eMinerals project

RP Tyer, PA Couch, Thomas V Mortimer-Jones, K Kleese van Dam, IT Todorov
 STFC, Daresbury Laboratory, Warrington, Cheshire WA4 4AD

RP Bruin, TOH White, AM Walker, KF Austen, MT Dove
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ

Abstract

We report a pragmatic approach for metadata management developed by the eMinerals
project and which enables non-intrusive automatic metadata harvesting from grid-
enabled simulation calculations. The framework, called the RCommand framework,
gives users a set of unix line commands and a web interface to the metadata database.
Harvesting of metadata relies on the use of XML for output data file representation, and
new developments of the RMCS grid job submission tool incorporating the AgentX
library. We report the use of the Rgem tool to use metadata as a direct interface to data to
enable collation of data obtained from parameter-sweep grid studies.

1. Introduction
This paper describes a set of tools developed by
the eMinerals project to facilitate metadata
management and automatic harvesting of
metadata from computer simulations. The key
design requirements have been to ensure that
the tools should be non-intrusive for the users,
pragmatic in their design, and functionality that
will tempt scientists to adopt them into their
regular work patterns.

Metadata is of value to simulation scientists
for a number of reasons. First, metadata enables
scientists and their collaborators to identify the
information content of a set of data files without
needing to download them from where they are
stored or archived (we discuss the data grid
aspects later). It is not necessarily the case that
output data files contain sufficient information
to enable even the owner to properly identify
the information content sufficiently; the exercise
of generating metadata may actually force many
code developers to think seriously about the
issues of the vital supplementary information
that should be provided along with the key
output results. Second, metadata enables
researchers and their collaborators to locate data
files relatively easily, through directed searches
or browsing through the metadata. Like the first
point, the usefulness is critically dependent on
the quality of the metadata. Third, metadata can
provide a primary interface to data, which is one
of the features that is particularly important for
large data sets generated using grid computing
methods. This is important both for the
originator of the data and also for collaborators.

It is useful at this point to give a practical
example. The eMinerals project, through which
this work is being carried out, has a strong focus
on studying environmental processes at a
molecular level using a range of atomistic
simulation methods (such as quantum
mechanical tools and large-scale classical
molecular dynamics methods). One study
concerns molecular pollutants on mineral
surfaces. In the case of the polychlorobiphenyl
(PCB) system, chemical formula C12H10–xClx,
we are aiming to compare the energies of all
210 congeners (molecules with different values
of x and different positions of the atoms) in
isolation and in contact with a mineral surface,
together with repeat calculations using different
simulation models. Metadata is used to
document the exact conditions of each
simulation, effectively replacing the role of the
logbook or README file; while these sufficed
for a scientist working on a limited number of
simulations, they fail when faced with the
massive increase in capacity of these studies
enabled by access to grid computing. This
information enables collaborators to quickly
understand the details of the various
calculations, and to find the location of the data
files. The metadata also enables collaborators to
search for data files that match certain
conditions, such as type of atomic basis set (i.e.
the numerical description of the electronic wave
function), or the orientation of a mineral
surface, or even to search for the molecules or
crystal faces with the lowest binding energies.
Finally, when quantities such as the value of the
energy for each run are stored as metadata, it is

relatively easy to use our tools to collate the
data for subsequent analysis.

In this paper we will describe the approach
to metadata capture and management developed
within the eMinerals project. We will give an
outline of the broader context first, and then will
describe the RCommand framework and client
tools. We will discuss these are used for
metadata collection, and will outline the
important role of XML file representation. We
will conclude with two case studies.

2. The eMinerals computing and data
environment
The eMinerals project has focussed on
developing grid computing infrastructures for
simulation sciences [1]. Our approach has been
to integrate grid computing (based on clusters
and Condor pools) with grid data management
methods based on the San Diego Storage
Resource Broker (SRB). To make the interactive
with the compute grid as easy to use as possible
we have developed the RMCS tool for grid job
submission; this is a web services wrapping of
our established my_condor_submit tool. Users
provide RMCS with a Condor-like set of
directives within a single file, which control
issues such as job metascheduling, locations of
the collections on the SRB that contain input
files and applications and where output files
should be placed, and, most recently, how
metadata are to be collected (discussed below).

Although we are currently using the SRB for
data management (archiving, staging and
sharing), we have chosen to not be specifically
tied to the SRB for all data transactions and
hence also for metadata management. For
example, we are also experimenting with
webdav based data grid approaches, and other
users may want to have metadata tied to files
stored on FTP or HTTP servers. Thus our
metadata tools need to be decoupled completely
from the specific data grid solutions we are
using. This mitigated against using the SRB’s
metadata tools as our primary metadata
infrastructure.

3. Metadata in the eMinerals project

3.1 Metadata organisation model
The model we use has three levels within which
metadata are organised, Figure 1. The top level
is the study level, which is self-explanatory. It is
possible to associate named collaborators with
this level, enabling collaborators to view and
edit the metadata within a study. The next level
is the dataset level. This is the most abstract
level, and users are free to interpret this level in
a variety of ways. Examples are given in Table
1. The third level is the data object level. This is
the level that is associated with a specific URI,
such as the address of a file or collection of files
within the SRB, or an HTTP or FTP URL. The
data object may be the files generated by a
single simulation run, and/or the outputs from
subsequent data analysis. In combinatorial or
ensemble studies, it is anticipated that there will
be many data objects associated with a single
dataset, and it is the dataset level at which
different types of calculations within a single
study are organised.

This hierarchy of levels provides a high
degree of flexibility for the individual scientists,
each of whom will tailor it with for different
work patterns. Some scientists may generate a
large number of study levels, whereas other
scientists might put all their work into one
study. We remark that our tools can attach
metadata to each of the three levels.

Dataset

Data object

Study

Figure 1. Graphical representation of the three
metadata levels.

Study Molecular dynamics simulation of silica
under pressure

Ab initio study of dioxin molecules on
clay surface

Data set Identified by the number of atoms in the
sample and the interatomic potential
model used

Identified by number of chlorine atoms in
the molecule and the specific surface site

Data object Collection on the SRB containing all input
and output files

Collection on the SRB containing all input
and output files

Table 1. Examples of how the study / dataset / data object levels have been used to organise data.

3.2 Metadata to capture
Typically it is expected that metadata
associated with the study and dataset
levels will be added by hand, with the
automated metadata capture to be
provided at the data object level
(although we provide tools for metadata
to be automatically captured for
datasets). We define five types of
metadata to capture:
Simulation metadata: information such

as the user who performed the run,
the date, the computer run on etc.

Parameter metadata: values for the
parameters that control the
simulation run, such as temperature,
pressure, potential energy functions,
cut-offs, number of time steps etc.

Property metadata: values of various
properties calculations in the
simulation that would be useful for
subsequent metadata searches, such as final
or average energy or volume.

Code metadata: information that the code
developers deemed useful when creating the
code to enable users to determine what
produced the simulation data, such as code
name, version and compilation options.

Arbitrary metadata: strings that the user deems
important when running the study to enable
later indexing into the data, such as whether
a calculation is a test or production run.

4. The RCommand metadata
framework

4.1 Architecture
The metadata framework we have developed is
based on a three-tied architecture, as shown in
Figure 2. The three tiers are:
Client: The client layer seen by most users is a

set of binary tools written in C using the
gSOAP library (the RCommands shell tools
described below). The motivation for using
C was the requirement that the tools be as
self-contained as possible so they can easily
be executed server side via Globus. Other
client tools can be built onto this layer.

Application Server: The application server is
written in Java using Axis as the SOAP
engine and JDBC for database access. The
code essentially maps from procedural web
service calls to SQL appropriate for the
underlying database [2].

RDBMS: The backend database is served by a
Oracle 10g RAC cluster. Although Oracle is
used, there is no requirement for any Oracle
specific functionality.

One of the main reasons for using a three tier
model is that the backend database is behind a

firewall and thus cannot be accessed directly
from client machines. The application server
provides the interface between the user’s tools
and the metadata database. SOAP messages are
sent to the application server from the cient
tools via SSL-encrypted HTTP. The application
server is authenticated using its certificate while
the client requests are authenticated using
usernames and passwords.

The use of web service technology is
advantageous as it allows all the network related
code to be auto-generated. On the server, the
Axis SOAP engine is configured to expose
specified methods of certain classes as RPC
web services. The corresponding client code is
generated on the fly by gSOAP from the WSDL
file produced by Axis. In addition to the rapid
development afforded by the use of web
services, there is an additional requirement to
allow the server side functionality to be
exploited by members of the project interested
in web services workflows [3].

4.2 The RCommand shell tools
We have developed a set of scriptable unix line
commands as the primary client interface to the
metadata database. These enable users to that
perform functions such as uploading metadata
to the metadata database, and listing metadata
items. The various comments, which we
colloquially call the RCommands, are defined in
Table 2. To use these commands, the user needs
a directory called .rcommands, which
contains a configuration file with information
about the user’s metadata account and the
location of digital certificates.

4.3 Metadata Manager: the web interface
to the metadata database
The RCommand shell commands were initially
written to provide tools that can be used in

Figure 2. The three-tier architecture of the RCommand
metadata framework.

scripts, but nevertheless they give scientists a
useful interface to the metadata database.
However, there are cases when a web interface
is better, particularly when requiring a graphical
overview that cannot be provided by a unix
shell interface. We have developed a web
interface to the metadata data based called the
Metadata Manager (MDM, Figure 3). This
provides an initial overview of the study level,
from which the user can drill down into the
various layers. The user can perform a number
of the functions that are provided by the
RCommand shell tools.

Although some users have clear preferences
for either portal interfaces or command line
tools, it is more natural to use a web interface
for the high level (study) metadata and the
command line tools via scripts for the fine
grained (parameter) metadata. However, the
same functionality is exposed via the portal,
web service API and command line tools. This
allows the users the flexibility to fit the
metadata functionality into their preferred
working paradigm, rather than requiring the
user to adopt their working methods to fit into
the technology.

The MDM design uses the JSP Model 2

architecture, which is based on the Model-View-
Controller (MVC) pattern. The majority of the
code in the Model layer is common to both the
RCommand shell tools and the MDM. Hence, as
with the shell tools, the database connectivity is
provided using the JDBC libraries.

5. Collecting metadata

5.1 The role of XML in output files
Much of the metadata we collect is harvested
from output data files. To facilitate this, we have
enabled our key simulation programs to write
the main output files in XML. Specifically we
use the Chemical Markup Language [4]. The
vast majority of our simulation codes have been
written in Fortran, and we have developed a
Fortran 95 library called FoX to provide
routines for writing well-formed XML [4].

CML specifies a number of XML element
types for representing lists of data. We make use
of three of these:
metadataList: This list contains certain

general properties of the simulation, such as
code version;

parameterList: This list contains
parameters associated with the simulation;

RCommand Action

Rinit Starts an RCommand session by setting up session files

Rpasswd Changes the password for access to the metadata database

Rcreate Creates study, dataset and data object levels, associating the lower levels with the
level immediate above, adding a name to each level, adding a metadata description
and topic association in the case of creating a study, and associating a URI in the
case of creating a data object.

Rannotate Adds metadata. In the case of studies or datasets, this enables a metadata
description, and in the case of datasets and data objects it also enables metadata
name/value pairs. It also enables more topics to be associated with a study.

Rls Lists entities within the metadata database. With no parameters, it lists all studies,
and with parameters it will list the entries within a study or dataset level. It can also be
used to list all possible collaborators or science topics.

Rget Gives the metadata associated with a given study, dataset or data object. In the case
of a study, it can also list associated collaborators and science topics.

Rrm Removes entities or parameters from the metadata database.

Rchmod Add or remove co-investigators from a study.

Rsearch Search the metadata database, tuned to search within different levels and against
descriptions, name/value pairs and parameters.

Rexit Ends an RCommand session, cleaning up session files.

Table 2. The ten RCommand unix line commands.

propertyList: This list contains properties
computed by the simulation.

It is usual to have more than one of each list,
particularly the propertyList. Clearly these
lists correspond closely to the metadata types
described earlier in this paper. Examples are
shown in Figure 4.

5.2 Automatic metadata capture within a
grid computing environment
As described in the introduction, the eMinerals
project scientists run their simulations within
the eMinerals minigrid using the RMCS tool [1].
This is a generic tool that will work on any
compute grid infrastructure that has Globus and
the SRB and metadata client tools installed (eg
the National Grid Service).

As noted above, RMCS has a Condor-like
interface for the user. It has the standard Condor
commands for running jobs, with additional
commands for managing data within the SRB. It
now has additional commands for accessing the
metadata database.

Here we give a brief introduction to the
metadata capture processes. RMCS deals with
four different types of metadata capture:
1. An arbitrary text string specified by the user.

2. Environment metadata automatically
captured from the submission and execution
environment including details such as
machine names, submission and completion
dates, executable name, etc.

3. Metadata captured is extracted from the first
metadataList and parameterList
elements described in the previous section.

4. Additional metadata extracted from the
XML documents. These specifications take
the form of expressions with a syntax similar
to XPath expressions. These are parsed by
MCS and broken down into a single term
used to provide the context of the metadata
(such as ‘FinalEnergy’) and a series of
calls to be made to the AgentX library [5].

The AgentX library calls, made from RMCS as a
result of the user specified metadata
expressions, query documents for data with a
specific context. For example, AgentX could be
used to find the total energy of a system
calculated during a simulation. In this case
(Figure 5), the user specified expression might
have the form:
AgentX = FinalEnergy,

output.xml:PropertyList

Figure 3. Screen shots of the
Metadata Manager portal

[title='rolling
averages'].Property
[dictRef='dl_poly:eng_tot'].value

The term providing the name of the metadata
item is 'FinalEnergy' and the document to
be queried is output.xml. The string
following ‘output.xml:’ is parsed by
RMCS and converted to a series of AgentX
library calls. In this example, AgentX is asked
to locate all the data sets in output.xml that
relate to the concept ‘property’ and which
have the reference ‘dl_poly:eng_tot’ (the
average energy of a system in the context of the
DL_POLY simulation code). The value of this
property is extracted and associated with the
term FinalEnergy. The RCommand shell
tools are then used to store this name-value pair
in the metadata database.

AgentX works with a specification of ways
to locate data in documents (such as a CML
document) that have a well defined content
model. There are two components to the
AgentX framework:
1. An ontology that specifies terms relating to

concepts of interest in the context of this
work. These terms relate to classes of real
world entities of interest and to their
properties. The ontology is specified using
the Web Ontology Language (OWL) and
serialised using RDF/XML. The Protégé
Ontology Editor and Knowledge Acquisition
System has been used for its development.

2. The second component is the mappings,
which are used to relate terms in the ontology

to document fragment identifiers. For XML
documents, these fragment identifiers are
XPointer expressions that may be evaluated
to locate data sets and data elements in the
documents. Each format is associated with its
own set of mappings, and a set has been
developed for eMinerals use of the Chemical
Markup Language. The mappings are also
serialised using RDF/XML.

AgentX is able to retrieve information from
arbitrary XML documents, as long as mappings
are provided. Such mappings exist for a number
of codes (e.g. VASP, SIESTA and DL_POLY),
and the number of concepts involved is being
increased. In addition, mappings are under
development for other codes.

Because the content of the data, for
AgentX’s purposes, resides entirely in the
mapping between the concepts and the
document structure (rather than solely in the
structure itself), we have been able to design a
more efficient representation for large datasets
(such as DL_POLY configurations containing
more than 106 atoms) at the expense of losing
the contextual information from the document
itself compared to standard XML.

5.3 Post-processing using the RParse tool
Although by design of its implementation,
XML output will capture all information
associated with the inputs and outputs of a
simulation, it is inevitable that the automatic
tools may miss some of the metadata. The
nature of research work dictates that it is not
always obvious at the start of a piece of work
what properties are of most interest. Thus we

<?xml version="1.0" encoding="UTF-8"?>
<cml xmlns="http://www.xml-cml.org/schema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<metadataList>
 <metadata name="identifier" content="DL_POLY version 3.06 / March 2006"/>
</metadataList>

<parameterList title="control parameters">
 <parameter title="simulation temperature" name="simulation temperature"
 dictRef="dl_poly:temperature">
 <scalar dataType="xsd:double" units="dl_polyUnits:K">50.0</scalar>
 </parameter>
</parameterList>

<propertyList title="rolling averages">
 <property title="total energy" dictRef="dl_poly:eng_tot">
 <scalar dataType="xsd:double" units="dl_polyUnits:eV_mol.-1">-2.7360E+04
 </scalar>
 </property>
</propertyList>

</cml>

Figure 4. Extracts of a CML output file, showing examples of the metadataList,
parameterList and propertyList containers.

have developed a tool to scan over the
XML files contained within the data
objects in a single dataset to extract
metadata based on CML parameters.

The Rparse tool allows automatic
metadata ingestion after the
simulation has finished and the data
have been stored within the datagrid.
The tool will trawl specified
collections within SRB space, download key
XML output files and harvest metadata for the
user. This metadata is then inserted into a
specified study/dataset within the metadata
database along with the URI pointing to the
relevant datafile within the SRB. This
functionality is achieved by using the
Scommands (SRB unix shell client tools), the
RCommand shell tools, and the AgentX library.
The user needs to specify a root collection in
SRB, output files of interest, AgentX query
expressions, and the dataset into which the
metadata is to be inserted. Using this tool, it has
been possible to automatically insert metadata
for hundreds of XML files that where generated
prior to the MCS metadata functionality being
available.

6. Metadata as a primary interface to
data
In the introduction we cited three uses of
metadata. The first two of these, namely to
provide information about data and to locate
data, are common reasons for collecting good
metadata, and the tools we have described
above work well for this. The third reason is to
provide a primary interface to data, and we now
describe what this means together with a tool
we have developed for this.

Let us consider the example of a study in
which we compute properties of a material, such
as energy or volume, for many different
temperatures. The computations for each
different temperature are performed as separate
jobs on different grid resources, and each has its
own set of output files (including the CML
output file) stored in different collections within
the SRB or another data archive. The task facing
the researcher is to collate all the data to
produce a table of energy and volume as a
function of temperature. The traditional
approach is to scan over all the output files to
extract the input temperature and the final or
average values of energy and volume. The main

overhead for the researcher is to download all
the files from the data grid and manage the data
locally. However, the task of scanning the
output files for the core information was already
performed with the collecting of metadata,
either at the time of creation within the RMCS
process or subsequently using the Rparse tool,
and the metadata database is playing the role of
a cache for these data items.

We have developed a tool, called Rgem, that
uses the codebase of the RCommands, to scan
over the metadata associated with a set of data
objects contained within a dataset and extract
output parameter values from the metadata
database. In the above example, the user would
tell Rgem to collate the values of temperature,
energy and volume from the metadata
associated with all data objects within a given
dataset. Rgem then returns a table of data in
space-separated format, which the user can
either copy into a file or import into an analysis/
visualisation application.

Rgem has a significant impact in the
usability of grid resources. The task of
accurately collating all the core output values
from parameter-sweep studies is not trivial to
set up and run, but Rgem is sufficiently general
that using the metadata as the interface to the
data reduces this task to running a single shell
command, and the results are returned to the
user nearly instantaneously.

7. Case study

7.1. Cation ordering in silicates
The process of cation ordering in layer silicates
(such as clays) is performed using the Monte
Carlo method, with one simulation of each
temperature performed on a separate grid
resource. We collected as metadata input
parameters such as temperature, system size,
number of steps, and interatomic interaction
parameters, and output average values such as
energy, heat capacity, short-range and long-
range order parameters. The simulations were

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10

Temperature / Tc

N
e
ig

h
b
o
u
rs

Figure 5. Example of one data set
obtained using the Rgem command; in
this case we plot the short-range order
for cation ordering in a layer silicate
as a function of temperature.

performed as a collaboration between two of the
authors, who are based in different institutes.
The metadata were used to enable the two
collaborators to understand in detail the
different runs each other had performed (e.g.
when changing the system size). This is an
example where Rgem was used to collate tables
of output data from the metadata. An example
result is shown in Figure 5; the number of
points on the graph shows the extent of the data
collation problem.

7.2. Simulation studies of organic
molecules on mineral surfaces
As discussed in the introduction, we are running
detailed studies of the adsorption of organic
pollutant molecules on mineral surfaces. We run
a script to create all the input files for the
optimisation of a given set of molecules (using a
quantum mechanics code), the docking of these
molecules onto a chosen surface and the
calculation of the basis set superposition error
(BSSE). At each step the input files are
uploaded onto the eMinerals data grid before
the calculation is scheduled to run using RMCS.
Throughout this process metadata are added to
the metadata database.

In this example, we deposit all data objects
in a single data set and a single study. As well as
simplifying scripting by reducing the number of
logical locations that must be stored and used to
set up calculations, this provides a useful test of
the database search capability. Data objects are
created in two ways. For each set of input data
created a data object is created by calling the
RCommand shell tools from the desktop
resource. This object points to the SRB
collection that contains the input files, and
includes the time and date of creation, the
reason for the run (molecule optimisation in
vacuum, relaxation on a surface, or one of
several calculations needed to correct for the
BSSE) and the fact that the job has been
submitted. The second data object is created by
RMCS on successful completion of the
calculation. This data object is related to the
results of the calculation and points at a
collection in the SRB where these results reside
(in principle this could be the same collection as
the input files, but to avoid pollution of the
input we create a sub collection called “results”
for each calculation). Metadata stored at this
stage includes the environment where the job
ran and key parameters of the calculation
collected from the XML output of the run.

8. Summary points
‣ We have developed a production-level

infrastructure that integrates data, compute
and metadata functionality. At the heart of this

metadata functionality is the RCommand
scriptable shell tools for metadata
manipulation. These tools, coupled with the
RMCS framework and AgentX, have enabled
the automatic harvesting of metadata with no
additional overhead for the scientists.

‣ We have provided portal and client tools to
allow the users to search and manipulate their
metadata. The use of a web service API for
the server side components has further
enabled the metadata functionality to be
integrated into existing client tools with
minimal effort.

‣ We have shown that the metadata database
can be automatically populated with little
effort and in a non-intrusive way.

‣ While there is a clear semantic difference
between metadata and data, some of our
experience suggests that for practical
purposes it is sensible to blur the distinction.
For example, using a final energy of –1.15
eV as metadata enables the user to search for
datasets with energies lower than –1 eV.

‣ The Rgem tool enables researchers to use the
metadata as a primary interface to data,
enabling them to easily collate data from
many separate jobs within a parameter-sweep
study performed on a compute grid
infrastructure.

Acknowledgement
We are grateful for funding from NERC (grant
reference numbers NER/T/S/2001/00855, NE/
C515698/1 and NE/C515704/1).

References
1. MT Dove et al. “Usable grid infrastructures:

practical experiences from the eMinerals project”.
Proceedings of UK eScience All Hands Meeting
2007

2. M Doherty, K Kleese, S Sufi. “Database Cluster
for e-Science”. Proceedings of UK eScience All
Hands Meeting 2003, pp 268–271

3. C Chapman et al. “Simple Grid Access using the
Business Process Execution Language”.
Proceedings of UK eScience All Hands Meeting
2006, pp 377–380

4. TOH White et al. “Application and uses of CML
within the eMinerals project”. Proceedings of UK
eScience All Hands Meeting 2006, pp 606–613

5. PA Couch et al. “Towards Data Integration for
Computational Chemistry”. Proceedings of UK
eScience All Hands Meeting 2005, pp 426–432

