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Abstract

Within the eMinerals project we have been making increasing use of CML (the Chemical Markup 
Language) for the representation of our scientific data. The original motivation was primarily to aid 
in data interoperability between existing simulation codes, and successful results of CML-mediated 
inter-code communication are shown. In addition,  though, we have discovered several other areas 
where XML technologies have been invaluable in developing an escientific virtual organization, 
and benefiting collaboration.  These areas are explored, and we show a number of tools which we 
have constructed. In particular,  we demonstrate 1) a general library,  FoX for allowing Fortran 
programs to interact with XML data, 2) a general CML viewing tool, ccViz, and 3) an XPath 
abstraction layer, AgentX. 

1. Introduction

1.1 Introduction to eMinerals

The eMinerals project is a NERC testbed escience 
project. Our remit is to study environmentally 
relevant problems, using molecular-scale modelling 
techniques, while developing and using escience 
technologies which directly improve the quality of 
research we produce.

To this end, the eMinerals project encompasses, 
on the scientific side, researchers from a number of 
UK universities and research institutions, who 
represent a broad section of the theoretical and 
computational environmental science community. 
These researchers have expertise on a wide variety of 
modelling codes. Indeed, we have within our team 
key members of the development teams for several 
widely used simulation codes (for example, SIESTA 
has over 1000 users world-wide, and DL_POLY has 
several thousand.)

On the escience front, therefore, our challenge is 
to harness this rich expertise, and facilitate 
collaboration and cross-fertilization between these 
overlapping areas of science. This paper will show 
how XML technologies have enabled that, and 
highlight a number of tools that have resulted from 
the project.

1.2 Introduction to CML

CML (Chemical Markup Language)[1] was in fact 
the first example of a full XML language and 
application. Although initially designed around 
specifically chemical vocabularies, it has proved very 
flexible,  and more than able to take the additional 
semantic burden of computational atomic molecular 
and molecular physics codes.

1.3 eMinerals CML background

The eMinerals project has been working with CML 
for several years now, and we have reported on 
progress in previous years[2,3]. Our experience has 
been wholly positive, and CML is playing an 
increasingly important rôle throughout the project, 
above and beyond the niches we initially envisaged it 
filling.

2. CML in eMinerals

As mentioned in the introduction,  the eMinerals 
project includes scientists from a range of different 
backgrounds, who work with a wide range of codes. 
For example, two widely used codes on the project 
are SIESTA[4], a linear-scaling electronic structure 
code; and DL_POLY-3[5], a classical molecular 
dynamics code which uses empirical potentials. In 
addition, we also use a number of other simulation 
codes (amongst which are OSSIA[6], RMCProfile
[7], METADISE[8]) all written in Fortran.



All of these codes accept and emit chemical, 
physical, and numerical data, but each uses its own 
input and output formats. This presents a number of 
challenges when scientists from different 
backgrounds, familiar with different codes, have to 
collaborate:

• when trying to exchange data,  format 
translation and data conversion steps are necessary 
before different codes can understand the data.

• translation at the human level is necessary, 
since a scientist familiar with the look and feel of 
DL_POLY output may not understand SIESTA 
output,  nor know where to look for equivalent 
data.

Both of these problems can be addressed using 
XML technologies, and we expand upon this below.

A problem, by no means unique to this project,  is 
that all of our scientific simulation codes are written 
in Fortran,  of varying ages and styles.  There are a 
number of potential approaches to interfacing Fortran 
and XML; the approach we have adopted is to write 
an extensive library,  in pure Fortran, which exposes 
XML interfaces in a Fortran idiom. Its design and 
implementation are briefly explained in section 3.

Having succeeded in making our Fortran codes 
speak XML, we have found three areas in particular 
where XML output has been useful. These are briefly 
explained below, and the tools and methods we have 
developed are explained in sections 4, 5, and 6.

2.1 Data transfer between codes

When considering the rôle of XML within a project 
involved in computational science, with multiple 
simulation codes in use, the temptation is first to 
think about its use in terms of a common file format 
which would allow easier data interchange between 
codes; and indeed that is the perspective from which 
the eMinerals project first approached XML.

The potential uses of the ability to easily share 
data between simulation codes are manifold.  For 
example, as mentioned previously, we have multiple 
codes available, and they are capable of doing 
conceptually similar things, but using different 
techniques. We might wish to study the same system 
using both empirical potentials (with DL_POLY) and 
quantum mechanical DFT (with SIESTA). This 
would enable us to gain a better appreciation of the 
different approximations inherent in each method, 
and better understand the system. 

This complementary use of two codes would be 
made much easier if we could use identical input 
files for both codes, rather than having to generate 
multiple representations of the same data. Without 
any such ability, extra work is required, and there is 
the potential for errors creeping in as we move 
between representations.

Furthermore, we might wish to use the output of 
one code as the input to another. We might wish to 
extract a small piece of the output of a low accuracy 
simulation, and study it in much greater depth with 
our more precise code. Conversely, we might want to 
take the output of a highly accurate initial 

calculation, and feed it into a low accuracy code to 
get more results.

In either of these cases, our workload would be 
greatly reduced if we could simply pass output 
directly from one code to another,  without 
concerning ourselves with conversion of 
representations.

However, the route to this lofty though apparently 
simple goal of data interoperability is beset by a 
multitude of complicating factors.  We have made 
much progress towards it, but due to its 
complications, we have described it last, in section 6.

However, along the way we have discovered 
several other areas where XML has aided us in our 
role as an escience testbed project, and these we shall 
describe first, and expand in sections 4 and 5.

2.2 Data visualization and analysis

One of the major features of XML is the ease with 
which it may be parsed. Writing an XML parser is by 
no means trivial, but for almost all languages and 
toolkits in current use, the work has already been 
done. Thus,  to write a tool which takes input from an 
XML file, a developer need only interact with an in-
memory representation of the XML.

When a computational scientific simulation code 
is executed, it will produce output in some format 
which has its origins in a more-or-less humanly 
readable textual form. Often, though, accretion of 
output will have rendered it less comprehensible - 
and in any case a long simulation may well result in 
hundreds of megabytes of output,  which can 
certainly not be easily browsed by eye.

Output from calculations serves two purposes. 
First, it enables the scientist to follow the 
calculation's progress as the job is running, and, once 
it has finished, to ensure that it has done so in the 
proper manner, and without errors.

Secondly,  it is rare that the scientist is only 
interested in the fact that the job has finished. 
Usually, they want to extract further, usually 
numerical, data from the output, and explore trends 
and correlations.

These two aims are rarely in accord and this 
results in output formats having little sensible logical 
structure. Thus, for some purposes, the scientist will 
scan the output by eye, while for others, tools must 
be written to parse the format, and extract and 
perhaps graphically display relevant data.

XML formats are optimized for ease of 
computational processing at the expense of human 
readability. Thus if the simulation output is in XML, 
scanning by eye becomes infeasible, but processing 
and visualization tools may be written with much 
greater ease. If the XML format is common these 
tools may be of wide applicability. We detail the 
construction of such tools below, in section 4.

2.3 Data management

In addition to efforts towards data interoperability, 
and data visualization, there is a third area where we 
have found XML invaluable, that of data 
management.



The use of grid computing has brought about an 
explosion in the volume of data generated by the 
individual researcher. eScience tools have enabled 
the generation of multiple jobs to be run, allocation 
of jobs to available computational resources, 
recovery of job output, and efficient distributed 
storage of the resultant data. We have addressed all 
of these to some extent within our project[9] and we 
are by no means unique in this.

However, given this large volume of data, 
categorization is extremely important to facilitate 
retrieval in both the short term when knowledge on 
the purpose and context of the data is still to hand 
and long term, when it may not be. Of equal 
importance is that when collaborating with 
geographically disparate colleagues, the data must be 
comprehensible by both the original investigator who 
will have some notion of the data’s context, and by 
other investigators who may not.

This is related of course to the perennial problem 
of metadata, to which there are many approaches. 
The solution we have come up with in the eMinerals 
project depends heavily on the fact that our data is 
largely held as XML, which makes it much easier to 
automatically parse the data to retrieve useful data 
and metadata by which to index it.

The tools and techniques used are explained 
further in section 5.

3. Fortran and XML

It was mentioned in the Introduction that we were 
faced with the problem of somehow interfacing our 
extensive library of Fortran codes with the XML 
technologies we wished to take advantage of.  There 
are a number of potential approaches to this issue.

We could write a series of translation scripts, or 
services, using some XML-aware language, which 
would convert between XML and whatever existing 
formats our codes understood. This however requires 
a multiplication of components, and increases the 
fragility of our systems.

Alternatively, we could write wrappers for all our 
codes, again in some XML-aware language, which 
hid the details of our legacy I/O behind an XML 
interface. Again though, this is a potentially fragile 
approach, and requires additional setup of the 
wrapper wherever we wish to run our codes.

A third potential solution is to reverse the 
problem, and use Fortran to wrap an existing XML 
library written in another language, probably C, so 
that the codes might directly call XML APIs from 
Fortran, and our workflows ignore the legacy I/O. 
However, Fortran cross-language compilation is 
fraught with difficulties,  and in addition we would 
need to ensure that our C library was available and 
compiled on all platforms where we wished to run.

The solution that we have adopted is to write, 
from scratch, a full XML I/O library in Fortran,  and 
then allow our Fortran codes to use that. 

One of the major advantages of Fortran, and one 
of the reasons why it is in continued use in the 
scientific world, is that compilers exist for every 
platform, and Fortran code is extremely portable 

across the 9 or 10 compilers, and 7 or 8 hardware 
platforms, which are commonly available. There is 
no XML-aware language which is as portable,  and 
cross-language compilation over that number of 
potential systems is a painful process. So, although 
writing the whole library from scratch in Fortran 
does involve more work than leveraging an existing 
solution, it achieves maximum portability, and means 
we are not restricted at all upon where our XML-
aware codes may run. 

The library we have written is called FoX 
(Fortran XML)[10] and an earlier version (named 
xmlf90) was described in [2]. In its current 
incarnation, it consists of four modules, which may 
be used together or independently. Two of them 
provide APIs for input APIs, and two for output.

On the input side, the modules provide APIs for 
event-driven processing, SAX 2[11], and for DOM 
Core level 2[12]. On the output side, there is a 
general-purpose XML writing library; built on top of 
which is a highly abstracted CML output layer.  It is 
written entirely in standard Fortran 95.

The SAX and DOM portions of the library 
contain all calls provided by those APIs, modified 
slightly for the peculiarities of Fortran. An overview 
of their initial design and capabilities may be seen in 
[2] although the current version of FoX has 
significantly advanced, not least in now having full 
XML Namespaces[13] support.  The two output 
modules, wxml and wcml are described here.

3.1 wxml

Clearly XML can be output simply by a series of 
print statements, in any language. However, XML is 
a tightly constrained language,  and simple print 
statements are firstly very prone to errors, and 
secondly, make correct nesting of XML across a 
document impossible for anything but the most 
simple of applications.  The requirement for good 
XML output libraries has long been recognized.

However, for most languages,  simple XML 
output libraries rarely exist, or tend to be second-
class citizens. More usually, XML output tends to be 
a simple addendum to a DOM library. If so, a method 
is provided which serializes the in-memory DOM. 
Thus as long as your data structures are held as a tree 
in memory, XML output is trivial.

Indeed, FoX supplies such a method with its 
DOM implementation. For applications that can 
easily be written around a tree-like data structure, 
this is fine. However, for nearly all existing Fortran 
applications, this is of no use whatsoever; Fortran is 
not a language designed with tree-like data-structures 
in mind, and in any case most Fortran developers are 
unfamiliar with anything more complicated than 
arrays. Forcing all data in a simulation code to be 
held within a DOM-like model would be entirely 
unnatural.

Furthermore, simulation codes often produce 
extremely large quantities of data, and may do so 
over extended periods of time. It would be foolish to 
keep this data all in memory for the entirety of the 
simulation. Not only would it be a vast waste of 



memory, but since one would only be able serialize 
once the run is over and all the data complete,  if the 
run were interrupted, all data would be lost. In 
addition, it is very important that one be able to keep 
track of the simulation as it progresses by observing 
its output, which requires progressive output, rather 
than all-in-one serialization.

Much of this could be avoided,  of course, by 
occasional serialization of a changing DOM tree; or 
even by temporary conversion of the large Fortran 
arrays to a DOM and then step-by-step output; or, 
indeed, by the method we use, which is direct XML 
serialization of the Fortran data.

Thus, the FoX XML output layer (termed wxml 
here) is a collection of subroutines which generate 
XML output - tags, attributes and text - from Fortran 
data. The library is extensive, and allows the output 
of all structures described by the XML 1.1 & XML 
Namespaces specifications[13,14], although for most 
purposes only a few are necessary. XML output is 
obtained by successive calls to functions named 
xmlNewElement, xmlAddAttribute, and 
xmlEndElement. Furthermore, there are a series 
of additional function calls to directly translate native 
Fortran data structures to appropriate collections of 
XML structures.  State is kept by the library to ensure 
well-formedness throughout the document.

Thus wxml enables rapid and easy production of 
well-formed XML documents, providing the user has 
a good grasp of the XML they want to produce.

3.2 wcml

However, the impetus for the creation of this library 
was the desire to graft XML output onto existing 
codes; specifically CML output. wxml is insufficient 
for this for a number of reasons:

• the developers of traditional Fortran simulation 
codes are, by and large, ignorant of XML, and 
entirely content to stay that way. 

• when adapting a code to output XML, it is 
important that any changes made not obscure the 
natural flow of the code. 

• it is desirable to write specialized functions to 
output CML elements, and common groupings 
thereof, directly (if for no other reason than to 
avoid misspellings of element and attribute names 
in source code.) 

• further, it is useful to maintain a “house style” 
for the CML.

Thus, for example, consider a code that wishes to 
output the coordinates of a molecular configuration. 
This is represented in CML by a 3-level hierarchy of 
various tags, with around 20 different optional 
attributes, and 4 different ways of specifying the 
coordinates themselves. The average simulation code 
developer does not wish to concern themselves with 
the minutiae of these details; they certainly do not 
wish to clutter up the code with hundreds of XML 
output statements.

In fact, were this output to be encoded in the 
source as a lengthy series of loops over wxml calls, it 
is almost certain that even if it were written correctly 

initially, as the code continued to be developed by 
XML-unaware developers, it would eventually break.

Therefore, FoX provides an interface where these 
details are hidden from view:

call cmlAddMolecule(xf=xmlFile,     
	
 coords=array_of_coords, 
	
 elems=array_of_elements)

which outputs the following chunk of CML:

<molecule>
  <atomArray>
    <atom xyz3=”0.1 0.1 0.1” 
	
 elementType=”H”/>
    ....
  </atomArray>
</molecule>

Similar interfaces are provided for all portions of 
CML commonly used by simulation codes.

Such calls do not interfere with the flow of the 
code, and it is immediately obvious what their 
purpose is. Further, with such calls, a developer with 
only a rudimentary knowledge of XML/CML can 
easily add CML output to their code.

This wcml interface is now used in most of the 
Fortran simulation codes within eMinerals, including 
the current public releases of SIESTA 2.0 and 
DLPOLY 3, and in addition is in the version of 
CASTEP[15] being developed by MaterialsGrid[16]. 
FoX is freely available, and BSD licensed to allow 
its inclusion into any products - we encourage its use. 

4. Data visualization

Although reformatting simulation output in CML 
allows for much richer handling of the data,  it has the 
aforementioned disadvantage that the raw output is 
then much less readable to the human eye than raw 
textual output.

This led to the desire for an tool which would 
translate the CML into something more 
comprehensible. At its most basic level, this could 
simply strip away much of the angle-bracketed-
verbiage associated with XML. However, since a 
translation needs to be done anyway, it is then not 
much more trouble to ensure that the translated 
output is visually much richer.

Such tools have been built before on non-XML 
bases, with adapters for the output of different codes, 
but what we hoped to do here was, through the use of 
XML, avoid the necessity for the viewing tool to be 
adapted for new codes. In addition, it was strongly 
desired that the viewing, as far as possible, require no 
extra software installation from the user, in order that 
data could be viewed by colleagues and collaborators 
as easily as possible.

Since CML is an XML language, and translations 
between XML languages are easily done; and 
XHTML is an XML language; and furthermore, these 
days the web-browser is an application platform in 
its own right, which is present on everyone's desktop 



already; we followed the route of transforming our 
CML into XHTML.

The browser application platform offers rich 
presentation of textual data, and rich presentation of 
graphical data, which can also be in an XML format, 
such as SVG (Scalable Vector Graphics). 
Furthermore, there is the possibility of interactivity, 
through the use of Javascript (JS) to manipulate the 
displayed XHTML/SVG. Finally, it affords the 
opportunity to to embed Java applets, for interaction 
on a level beyond what JS+XML can do; especially 
in this case through the use of Jmol[17], which is a 
pre-existing, well-featured molecular visualization 
platform.

Therefore, we wished to transform our CML into 
XHTML. This could be accomplished by many 
methods, but, XSLT was the obvious choice, since it 
is explicitly designed to convert between XML 
languages. Further, modern web-browsers have 
limited, but increasing, support for performing 
XSLT transformations themselves. This held out the 
possibility that we could rely on the browser to 
perform the transformation as well as the rendering 
of the output. We would then be able simply to point 
the web browser at the raw CML, and conversion 
would occur automatically. and in addition, is 
interpretable by the browser itself; thus it should be 
possible to view the CML file directly in the browser 
and have the transformation take place as the 
document is rendered. 

The result of this process was a set of XSLT 
transforms which we term ccViz (computational 
chemistry Visualizer). Browser XSLT capabilities are 
sadly not yet at the stage where they can perform the 
XSLT, but nevertheless ccViz has proved invaluable. 

The XSLT transformation starts with simple 
mark-up of quantities with their names and units 
extracted and placed together.  Thus instead of 
looking through the CML to find the total energy, the 
name “Total Energy” is marked up in colour, and its 
value shown, with units attached. This is shown in 
figure 1. Although the resultant page is nicer to look 
at,  and immediately more readable,  this 
transformation is very straightforward. However,  two 

particular further aspects of the transform deserve 
attention.

4.1 SVG graphs

Firstly, of note is the production of SVG graphs from 
the CML data. For a simulation output, it is valuable 
to see the variation of some quantities as the 
simulation progresses; of temperature, or total 
energy, for example. This can be done with a table of 
numbers, and indeed traditionally has been - the 
simulation scientist grows used to casting their eye 
down a list of numbers to gauge variation when 
viewing text output files, in the absence of a better 
solution. However, a line graph is much easier to 
grasp. SVG is ideally suited for rendering such 
graphs, as a 2D vector language. A generalized line-
graph drawing XSLT library was written,  which, 
when fed a series of numbers, will calculate offsets & 
draw a well-proportioned graph, with appropriate 
labels and units.  The visualization transform can then 
pull out any relevant graphable data (which may be 
determined solely from the structure of the 
document, independent of the simulation code used), 
and produces graphs,  which are then embedded 
inline into the XHTML document. 

The transform is performed entirely within XSLT, 
without recourse to another language, which makes it 
embeddable in the browser engine. An example is 
shown in figure 2. The plotting engine is known as 
Pelote and is freely available for use.

Thus, a mixed-namespace XHTML/SVG 
document is produced, and on viewing the output 
file, it is immediately easy to see the progress of the 
simulation by eye. This is of great importance, 
augmenting productivity by increasing the ease with 
which the researcher may monitor the progress of 
their simulations, particularly in a grid-enabled 
environment, with many concurrent jobs running.

4.2 Jmol viewing

Since the outputs of all of our codes concern 
molecular configurations, it would be extremely 
useful to be able to see and manipulate the 3D 
molecular structures generated by the simulation. 
This is a task it is impossible to perform by eye from 
a listing of coordinates. However, there is no 3D 
XML language which is sufficiently widely 

Figure 2: automatically generated SVG graph

Figure 1: marked up metadata and parameters



implemented in browsers to make this doable in the 
fashion we managed for 2D graphs.

Fortunately, the well-established tool, Jmol[17], 
which knows how to read CML files, is primarily 
designed to act as an applet embedded in web-pages. 
We may therefore use our XSLT transform to embed 
instances of Jmol into the viewable output. However, 
Jmol accepts input only as files or strings, so we 
needed to find a way to pass individual different 
molecular configurations from our monolithic CML 
document to different individual Jmol applets 
embedded in the transformed webpage. We overcame 
this problem by producing multiple-namespace 
XML documents: the output contains not only 
XHTML and SVG, but also chunks of CML, 
containing the different configurations of interest. 
Since the browser is unaware of CML, it makes no 
attempt to render this data. We then took advantage 
of Java/Javascript interaction to enable its use.

 There is an API for controlling the browser's JS 
DOM from a Java applet, called LiveConnect. We 
adapted the Jmol source code so that when passed a 
string which is the id of a CML tag in the embedding 
document, Jmol will traverse the in-memory browser 
DOM to find the relevant node, and extract data from 
the CML contained therein. This enables us to have a 
single XHTML document directly containing all the 
CML data, which knows how to interpret itself.  This 
addition to Jmol has been included in the main 
release, and is available from version 10.2. An 
example is illustrated in figure 3.

4.3 Final document

Thus, we constructed an XSLT transform which, 
when given a CML document, will output an 
XHTML/SVG/CML document which is viewable in 
a web-browser; in which all relevant input & output 
data is marked-up and displayed; all time-varying 
data is graphed, and all molecular configurations can 
be viewed in three dimensions and manipulated by 
the user.

Very conveniently, the XSLT transform knows 
nothing about what these quantities are, nor from 
what code they originate. So, we may add new 
quantities to the simulation output,  and they are 

automatically picked up and displayed in the 
browser, and graphed if appropriate. 

Furthermore, it is important to note that any other 
code which produces CML output is viewable in the 
same way. This is useful because one of the biggest 
barriers to be overcome in sharing data between 
scientists from different backgrounds is a lack of 
familiarity with each other’s toolsets. However, with 
ccViz, we can share data between DL_POLY and 
SIESTA users and view them in exactly the same 
way.

This transferability applies not only to this 
visualization tool, but to any analysis tools built on 
CML output - a tool which analyses molecular 
configurations, or which performs statistical analyses 
on timestep-averaged data, for example, need be 
written only once, since the raw information it needs 
may be extracted from the output file the same way 
for every CML-enabled code. Previously, such a tool 
would rely on the output format of one particular 
simulation code.

5. Data management

As mentioned above, working within a grid-enabled 
environment,  it is easy to generate large quantities of 
data. The problem then arises of how to manage this 
data. Within the eMinerals project we store our data 
using the San Diego Supercomputing Centre’s SRB 
[18], though there are many other solutions to 
achieve similar aims of distributed data storage.

However, the major problem encountered is not 
where to store the data, but how to index and retrieve 
it; for both the originator of the data and their 
collaborators. The eMinerals project faces a 
particular challenge in this regard, since we have a 
remarkably wide variety of data being generated. 
XML helps in this task in two ways. Firstly, having a 
common approach to output formats gives the 
advantages explained in the previous section. The 
second, larger, issue is the general problem of 
metadata handling, and approaches have been 
attempted with varying degrees of success by many 
people. The eMinerals approach is explained in great 
detail in [19]. However, we shall discuss it briefly 
here, with particular reference to the ways in which 
XML has helped us solve the problem.

There are three sorts of metadata which we have 
found it useful to associate with each simulation run:

• metadata associated with the compiled 
simulation code - its name, its version,  any 
compiled-in options, etc. Typically there will be 10 
or so such items.

• metadata associated with the set up of the 
simulation; input parameters, in other words. 
These will vary according to the code - some codes 
may use the temperature and pressure of the model 
system, some may record what methods were used 
to run the model, etc.  Typically there will be 50 or 
so such parameters

• Job-specific metadata. Since the purpose of 
metadata is in order to index the job for later, easy, 
retrieval, sometimes it is appropriate to attach 
extracted output as metadata. For example,  if a 

Figure 3: Interactive Jmol applet embedded in webpage.



number of jobs are being run, with the final model 
system energy being of particular interest, it is 
useful to attach the value of this quantity as 
metadata to the stored files in order that the jobs 
may be later examined, indexed by this value.

In each of these cases, we find our life made 
much easier due to the fact that our files are in an 
XML format.

For the first two types of metadata, we use the 
fact that CML offers <metadata> and 
<parameter> elements, which have a (simplified) 
structure like the following:
<metadataList>
  <metadata name=”Program” 
content=”DL_POLY”>
  ...
</metadataList>

We may therefore extract all such elements and 
store them as metadata values in our metadata 
database.

The third type of metadata obviously requires 
specific instructions for the job at hand. However, 
because the output files are in XML format, we may 
easily point to locations within the file such that tools 
can automatically extract relevant data. This can be 
done easily using an XPath expression to point at the 
final energy, for example (although in fact we do not 
use XPath directly - we use AgentX[20], as detailed 
in the next section.)

6. Data transfer

Finally, we have also succeeded in using XML to 
work towards code interoperability in the fashion 
originally foreseen.

The idea of a common data format is attractive, 
and as explained in section 2, would be of enormous 
value. It has, however, proved elusive so far, for a 
number of reasons, the discussion of which is beyond 
the scope of this paper.  Nevertheless, by passing 
around small chunks of well-formatted,  well-
specified data, and agreeing on a common dialect 
with a very small vocabulary, we are able to gain 
much in interoperability.

Much of the progress we have made in this area is 
due to AgentX, an XML abstraction tool we have 
built to help us in this task.

6.1 AgentX

AgentX is a tool originating primarily from CCLRC 
Daresbury, but in the development of which 
eMinerals has played an important part. A previous 
version was described in [20].

At its most basic, it may be understood as,  firstly, 
a method of abstracting complicated XPath 
expressions, and secondly as a method of abstracting 
access to common data which may expressed 
differing representations by various XML formats.

For example, the three-dimensional location of an 
atom within a molecule is expressed in CML, as 
shown in section 3.2 above,  with nested 
<molecule>, <atomArray>,  and <atom> 
elements.  AgentX provides an interface by which one 

can access that data in terms of the data represented 
rather than the details of that representation, as 
illustrated by the following, simplified, series of 
pseudocode API calls.

axSelect(”Molecule”)
numAtoms = axSelect(”Atom”)
for i in range(numAtoms):
   axSelect(’xCoordinate’)
   x = axValue()
   axSelect(’yCoordinate’)
   y = axValue()
   axSelect(’zCoordinate’)
   z = axValue()

Internally, this is implemented by AgentX having 
access to three documents - the CML source,  an 
OWL[21] ontology, and an RDF[22] mapping files.

 “Molecule” is a concept defined in the OWL 
ontology; and the RDF provides a mapping between 
that concept and an XPath/Xpointer expression, 
which evaluates to the location of a <molecule> 
tag. Furthermore,  the ontology indicates that 
“Molecule”s may contain “Atom”s, which may have 
properties “xCoordinate”,  “yCoordinate”, and 
“zCoordinate”. The RDF provides mappings between 
each of these concepts,  and XPath expressions which 
point to locations in the CML.

Thus, presented with a CML file containing a 
<molecule>, it may be queried with AgentX to 
retrieve the atomic coordinates by a simple series of 
API calls, without the need to understand the syntax 
of the CML file.

More powerfully, though, it is possible to specify 
multiple mappings for one concept. That is, we may 
say that a “Molecule” may be found in multiple 
potential locations. 

The normal CML format for specifying a 
molecule is quite verbose, albeit clear. For 
DL_POLY we needed to represent tens of thousands 
of atoms efficiently, so we used CML’s <matrix> 
element to provide a compressed format, at the cost 
of losing the contextual information provided by the 
CML itself.

However, by simply providing a new set of 
mappings to AgentX, we could inform it that 
“Molecule”s could be found in this new location in a 
CML file, so all AgentX-enabled tools could 
immediately retrieve molecular and atomic data 
without any need for knowledge of the underlying 
format change.

AgentX is implemented as an application on top 
of libxml2. It is implemented primarily in C, with 
wrappers to provide APIs for Perl, Python and 
Fortran.

Concepts and mappings are provided for most of 
the data that are in common use throughout the 
project, but it is easy to add private concepts or 
further mappings where the existing ones are 
insufficient.



6.2 Data interchange between codes

We have incorporated AgentX into the CML-aware 
version of DL_POLY. This has enabled us to use 
CML-encoded atomic configurations as a primary 
storage format for grid-enabled studies.  Details of 
studies performed with this CML-aware DL_POLY 
are in [23]. 

Furthermore, the output of any of our CML-
emitting codes may now be directly used as input to 
DL_POLY, so we can perform direct comparisons of 
SIESTA and DL_POLY results.

AgentX has also been linked into a number of 
other codes., including AtomEye[24]; and the CCP1 
GUI[25]. It is also used as the metadata extraction 
tool in the scheme described in section 5.

Thus we are now successfully using CML as a 
real data interchange format between existing codes 
that have been adapted to work within an XML 
environment.

7. Summary

Within the eMinerals project,  we have made wide, 
and increasing, use of XML technologies, especially 
with CML. 

While working towards the goal of data 
interoperability between environmentally-relevant 
simulation codes, we have found several additional 
areas where XML has been of particular use, and 
have developed a number of tools which leverage the 
power of XML technologies to enable better 
collaborative research and eScience. These include:

• FoX, a pure Fortran library for general XML, 
and particular CML, handling.

• Pelote, an XSLT library for generating SVG 
graphs from 

• ccViz, an XHTML-based CML viewing tool.
• AgentX, an XML data abstraction layer.
All of our tools are liberally licensed, and are 

freely available from http://www.eminerals.org/tools
Finally, we have successfully developed methods 

for true interchange of XML data between simulation 
codes.
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