
Application and Uses of CML within the eMinerals project

Toby O. H. White1, Peter Murray-Rust2, Phil A. Couch3, Rik P. Tyer2 , Richard P. Bruin1,

Ilian T. Todorov3, Dan J. Wilson4 , Martin T. Dove1, Kat F. Austen1 , Steve C. Parker5

1Department of Earth Sciences, Downing Street, Cambridge. CB2 3EQ
2University Chemical Laboratory, Lensfield Road, Cambridge. CB2 1EW

3CCLRC Daresbury Laboratory, Daresbury, Warrington. WA4 4AD
4Institut für Mineralogie und Kristallographie. J. W. Goethe-Universität, Frankfurt.

5Department of Chemistry, University of Bath. BA2 7AY

Abstract

Within the eMinerals project we have been making increasing use of CML (the Chemical Markup
Language) for the representation of our scientific data. The original motivation was primarily to aid
in data interoperability between existing simulation codes, and successful results of CML-mediated
inter-code communication are shown. In addition, though, we have discovered several other areas
where XML technologies have been invaluable in developing an escientific virtual organization,
and benefiting collaboration. These areas are explored, and we show a number of tools which we
have constructed. In particular, we demonstrate 1) a general library, FoX for allowing Fortran
programs to interact with XML data, 2) a general CML viewing tool, ccViz, and 3) an XPath
abstraction layer, AgentX.

1. Introduction

1.1 Introduction to eMinerals

The eMinerals project is a NERC testbed escience
project. Our remit is to study environmentally
relevant problems, using molecular-scale modelling
techniques, while developing and using escience
technologies which directly improve the quality of
research we produce.

To this end, the eMinerals project encompasses,
on the scientific side, researchers from a number of
UK universities and research institutions, who
represent a broad section of the theoretical and
computational environmental science community.
These researchers have expertise on a wide variety of
modelling codes. Indeed, we have within our team
key members of the development teams for several
widely used simulation codes (for example, SIESTA
has over 1000 users world-wide, and DL_POLY has
several thousand.)

On the escience front, therefore, our challenge is
to harness this rich expertise, and facilitate
collaboration and cross-fertilization between these
overlapping areas of science. This paper will show
how XML technologies have enabled that, and
highlight a number of tools that have resulted from
the project.

1.2 Introduction to CML

CML (Chemical Markup Language)[1] was in fact
the first example of a full XML language and
application. Although initially designed around
specifically chemical vocabularies, it has proved very
flexible, and more than able to take the additional
semantic burden of computational atomic molecular
and molecular physics codes.

1.3 eMinerals CML background

The eMinerals project has been working with CML
for several years now, and we have reported on
progress in previous years[2,3]. Our experience has
been wholly positive, and CML is playing an
increasingly important rôle throughout the project,
above and beyond the niches we initially envisaged it
filling.

2. CML in eMinerals

As mentioned in the introduction, the eMinerals
project includes scientists from a range of different
backgrounds, who work with a wide range of codes.
For example, two widely used codes on the project
are SIESTA[4], a linear-scaling electronic structure
code; and DL_POLY-3[5], a classical molecular
dynamics code which uses empirical potentials. In
addition, we also use a number of other simulation
codes (amongst which are OSSIA[6], RMCProfile
[7], METADISE[8]) all written in Fortran.

All of these codes accept and emit chemical,
physical, and numerical data, but each uses its own
input and output formats. This presents a number of
challenges when scientists from different
backgrounds, familiar with different codes, have to
collaborate:

• when trying to exchange data, format
translation and data conversion steps are necessary
before different codes can understand the data.

• translation at the human level is necessary,
since a scientist familiar with the look and feel of
DL_POLY output may not understand SIESTA
output, nor know where to look for equivalent
data.

Both of these problems can be addressed using
XML technologies, and we expand upon this below.

A problem, by no means unique to this project, is
that all of our scientific simulation codes are written
in Fortran, of varying ages and styles. There are a
number of potential approaches to interfacing Fortran
and XML; the approach we have adopted is to write
an extensive library, in pure Fortran, which exposes
XML interfaces in a Fortran idiom. Its design and
implementation are briefly explained in section 3.

Having succeeded in making our Fortran codes
speak XML, we have found three areas in particular
where XML output has been useful. These are briefly
explained below, and the tools and methods we have
developed are explained in sections 4, 5, and 6.

2.1 Data transfer between codes

When considering the rôle of XML within a project
involved in computational science, with multiple
simulation codes in use, the temptation is first to
think about its use in terms of a common file format
which would allow easier data interchange between
codes; and indeed that is the perspective from which
the eMinerals project first approached XML.

The potential uses of the ability to easily share
data between simulation codes are manifold. For
example, as mentioned previously, we have multiple
codes available, and they are capable of doing
conceptually similar things, but using different
techniques. We might wish to study the same system
using both empirical potentials (with DL_POLY) and
quantum mechanical DFT (with SIESTA). This
would enable us to gain a better appreciation of the
different approximations inherent in each method,
and better understand the system.

This complementary use of two codes would be
made much easier if we could use identical input
files for both codes, rather than having to generate
multiple representations of the same data. Without
any such ability, extra work is required, and there is
the potential for errors creeping in as we move
between representations.

Furthermore, we might wish to use the output of
one code as the input to another. We might wish to
extract a small piece of the output of a low accuracy
simulation, and study it in much greater depth with
our more precise code. Conversely, we might want to
take the output of a highly accurate initial

calculation, and feed it into a low accuracy code to
get more results.

In either of these cases, our workload would be
greatly reduced if we could simply pass output
directly from one code to another, without
concerning ourselves with conversion of
representations.

However, the route to this lofty though apparently
simple goal of data interoperability is beset by a
multitude of complicating factors. We have made
much progress towards it, but due to its
complications, we have described it last, in section 6.

However, along the way we have discovered
several other areas where XML has aided us in our
role as an escience testbed project, and these we shall
describe first, and expand in sections 4 and 5.

2.2 Data visualization and analysis

One of the major features of XML is the ease with
which it may be parsed. Writing an XML parser is by
no means trivial, but for almost all languages and
toolkits in current use, the work has already been
done. Thus, to write a tool which takes input from an
XML file, a developer need only interact with an in-
memory representation of the XML.

When a computational scientific simulation code
is executed, it will produce output in some format
which has its origins in a more-or-less humanly
readable textual form. Often, though, accretion of
output will have rendered it less comprehensible -
and in any case a long simulation may well result in
hundreds of megabytes of output, which can
certainly not be easily browsed by eye.

Output from calculations serves two purposes.
First, it enables the scientist to follow the
calculation's progress as the job is running, and, once
it has finished, to ensure that it has done so in the
proper manner, and without errors.

Secondly, it is rare that the scientist is only
interested in the fact that the job has finished.
Usually, they want to extract further, usually
numerical, data from the output, and explore trends
and correlations.

These two aims are rarely in accord and this
results in output formats having little sensible logical
structure. Thus, for some purposes, the scientist will
scan the output by eye, while for others, tools must
be written to parse the format, and extract and
perhaps graphically display relevant data.

XML formats are optimized for ease of
computational processing at the expense of human
readability. Thus if the simulation output is in XML,
scanning by eye becomes infeasible, but processing
and visualization tools may be written with much
greater ease. If the XML format is common these
tools may be of wide applicability. We detail the
construction of such tools below, in section 4.

2.3 Data management

In addition to efforts towards data interoperability,
and data visualization, there is a third area where we
have found XML invaluable, that of data
management.

The use of grid computing has brought about an
explosion in the volume of data generated by the
individual researcher. eScience tools have enabled
the generation of multiple jobs to be run, allocation
of jobs to available computational resources,
recovery of job output, and efficient distributed
storage of the resultant data. We have addressed all
of these to some extent within our project[9] and we
are by no means unique in this.

However, given this large volume of data,
categorization is extremely important to facilitate
retrieval in both the short term when knowledge on
the purpose and context of the data is still to hand
and long term, when it may not be. Of equal
importance is that when collaborating with
geographically disparate colleagues, the data must be
comprehensible by both the original investigator who
will have some notion of the data’s context, and by
other investigators who may not.

This is related of course to the perennial problem
of metadata, to which there are many approaches.
The solution we have come up with in the eMinerals
project depends heavily on the fact that our data is
largely held as XML, which makes it much easier to
automatically parse the data to retrieve useful data
and metadata by which to index it.

The tools and techniques used are explained
further in section 5.

3. Fortran and XML

It was mentioned in the Introduction that we were
faced with the problem of somehow interfacing our
extensive library of Fortran codes with the XML
technologies we wished to take advantage of. There
are a number of potential approaches to this issue.

We could write a series of translation scripts, or
services, using some XML-aware language, which
would convert between XML and whatever existing
formats our codes understood. This however requires
a multiplication of components, and increases the
fragility of our systems.

Alternatively, we could write wrappers for all our
codes, again in some XML-aware language, which
hid the details of our legacy I/O behind an XML
interface. Again though, this is a potentially fragile
approach, and requires additional setup of the
wrapper wherever we wish to run our codes.

A third potential solution is to reverse the
problem, and use Fortran to wrap an existing XML
library written in another language, probably C, so
that the codes might directly call XML APIs from
Fortran, and our workflows ignore the legacy I/O.
However, Fortran cross-language compilation is
fraught with difficulties, and in addition we would
need to ensure that our C library was available and
compiled on all platforms where we wished to run.

The solution that we have adopted is to write,
from scratch, a full XML I/O library in Fortran, and
then allow our Fortran codes to use that.

One of the major advantages of Fortran, and one
of the reasons why it is in continued use in the
scientific world, is that compilers exist for every
platform, and Fortran code is extremely portable

across the 9 or 10 compilers, and 7 or 8 hardware
platforms, which are commonly available. There is
no XML-aware language which is as portable, and
cross-language compilation over that number of
potential systems is a painful process. So, although
writing the whole library from scratch in Fortran
does involve more work than leveraging an existing
solution, it achieves maximum portability, and means
we are not restricted at all upon where our XML-
aware codes may run.

The library we have written is called FoX
(Fortran XML)[10] and an earlier version (named
xmlf90) was described in [2]. In its current
incarnation, it consists of four modules, which may
be used together or independently. Two of them
provide APIs for input APIs, and two for output.

On the input side, the modules provide APIs for
event-driven processing, SAX 2[11], and for DOM
Core level 2[12]. On the output side, there is a
general-purpose XML writing library; built on top of
which is a highly abstracted CML output layer. It is
written entirely in standard Fortran 95.

The SAX and DOM portions of the library
contain all calls provided by those APIs, modified
slightly for the peculiarities of Fortran. An overview
of their initial design and capabilities may be seen in
[2] although the current version of FoX has
significantly advanced, not least in now having full
XML Namespaces[13] support. The two output
modules, wxml and wcml are described here.

3.1 wxml

Clearly XML can be output simply by a series of
print statements, in any language. However, XML is
a tightly constrained language, and simple print
statements are firstly very prone to errors, and
secondly, make correct nesting of XML across a
document impossible for anything but the most
simple of applications. The requirement for good
XML output libraries has long been recognized.

However, for most languages, simple XML
output libraries rarely exist, or tend to be second-
class citizens. More usually, XML output tends to be
a simple addendum to a DOM library. If so, a method
is provided which serializes the in-memory DOM.
Thus as long as your data structures are held as a tree
in memory, XML output is trivial.

Indeed, FoX supplies such a method with its
DOM implementation. For applications that can
easily be written around a tree-like data structure,
this is fine. However, for nearly all existing Fortran
applications, this is of no use whatsoever; Fortran is
not a language designed with tree-like data-structures
in mind, and in any case most Fortran developers are
unfamiliar with anything more complicated than
arrays. Forcing all data in a simulation code to be
held within a DOM-like model would be entirely
unnatural.

Furthermore, simulation codes often produce
extremely large quantities of data, and may do so
over extended periods of time. It would be foolish to
keep this data all in memory for the entirety of the
simulation. Not only would it be a vast waste of

memory, but since one would only be able serialize
once the run is over and all the data complete, if the
run were interrupted, all data would be lost. In
addition, it is very important that one be able to keep
track of the simulation as it progresses by observing
its output, which requires progressive output, rather
than all-in-one serialization.

Much of this could be avoided, of course, by
occasional serialization of a changing DOM tree; or
even by temporary conversion of the large Fortran
arrays to a DOM and then step-by-step output; or,
indeed, by the method we use, which is direct XML
serialization of the Fortran data.

Thus, the FoX XML output layer (termed wxml
here) is a collection of subroutines which generate
XML output - tags, attributes and text - from Fortran
data. The library is extensive, and allows the output
of all structures described by the XML 1.1 & XML
Namespaces specifications[13,14], although for most
purposes only a few are necessary. XML output is
obtained by successive calls to functions named
xmlNewElement, xmlAddAttribute, and
xmlEndElement. Furthermore, there are a series
of additional function calls to directly translate native
Fortran data structures to appropriate collections of
XML structures. State is kept by the library to ensure
well-formedness throughout the document.

Thus wxml enables rapid and easy production of
well-formed XML documents, providing the user has
a good grasp of the XML they want to produce.

3.2 wcml

However, the impetus for the creation of this library
was the desire to graft XML output onto existing
codes; specifically CML output. wxml is insufficient
for this for a number of reasons:

• the developers of traditional Fortran simulation
codes are, by and large, ignorant of XML, and
entirely content to stay that way.

• when adapting a code to output XML, it is
important that any changes made not obscure the
natural flow of the code.

• it is desirable to write specialized functions to
output CML elements, and common groupings
thereof, directly (if for no other reason than to
avoid misspellings of element and attribute names
in source code.)

• further, it is useful to maintain a “house style”
for the CML.

Thus, for example, consider a code that wishes to
output the coordinates of a molecular configuration.
This is represented in CML by a 3-level hierarchy of
various tags, with around 20 different optional
attributes, and 4 different ways of specifying the
coordinates themselves. The average simulation code
developer does not wish to concern themselves with
the minutiae of these details; they certainly do not
wish to clutter up the code with hundreds of XML
output statements.

In fact, were this output to be encoded in the
source as a lengthy series of loops over wxml calls, it
is almost certain that even if it were written correctly

initially, as the code continued to be developed by
XML-unaware developers, it would eventually break.

Therefore, FoX provides an interface where these
details are hidden from view:

call cmlAddMolecule(xf=xmlFile,
	
 coords=array_of_coords,
	
 elems=array_of_elements)

which outputs the following chunk of CML:

<molecule>
 <atomArray>
 <atom xyz3=”0.1 0.1 0.1”
	
 elementType=”H”/>

 </atomArray>
</molecule>

Similar interfaces are provided for all portions of
CML commonly used by simulation codes.

Such calls do not interfere with the flow of the
code, and it is immediately obvious what their
purpose is. Further, with such calls, a developer with
only a rudimentary knowledge of XML/CML can
easily add CML output to their code.

This wcml interface is now used in most of the
Fortran simulation codes within eMinerals, including
the current public releases of SIESTA 2.0 and
DLPOLY 3, and in addition is in the version of
CASTEP[15] being developed by MaterialsGrid[16].
FoX is freely available, and BSD licensed to allow
its inclusion into any products - we encourage its use.

4. Data visualization

Although reformatting simulation output in CML
allows for much richer handling of the data, it has the
aforementioned disadvantage that the raw output is
then much less readable to the human eye than raw
textual output.

This led to the desire for an tool which would
translate the CML into something more
comprehensible. At its most basic level, this could
simply strip away much of the angle-bracketed-
verbiage associated with XML. However, since a
translation needs to be done anyway, it is then not
much more trouble to ensure that the translated
output is visually much richer.

Such tools have been built before on non-XML
bases, with adapters for the output of different codes,
but what we hoped to do here was, through the use of
XML, avoid the necessity for the viewing tool to be
adapted for new codes. In addition, it was strongly
desired that the viewing, as far as possible, require no
extra software installation from the user, in order that
data could be viewed by colleagues and collaborators
as easily as possible.

Since CML is an XML language, and translations
between XML languages are easily done; and
XHTML is an XML language; and furthermore, these
days the web-browser is an application platform in
its own right, which is present on everyone's desktop

already; we followed the route of transforming our
CML into XHTML.

The browser application platform offers rich
presentation of textual data, and rich presentation of
graphical data, which can also be in an XML format,
such as SVG (Scalable Vector Graphics).
Furthermore, there is the possibility of interactivity,
through the use of Javascript (JS) to manipulate the
displayed XHTML/SVG. Finally, it affords the
opportunity to to embed Java applets, for interaction
on a level beyond what JS+XML can do; especially
in this case through the use of Jmol[17], which is a
pre-existing, well-featured molecular visualization
platform.

Therefore, we wished to transform our CML into
XHTML. This could be accomplished by many
methods, but, XSLT was the obvious choice, since it
is explicitly designed to convert between XML
languages. Further, modern web-browsers have
limited, but increasing, support for performing
XSLT transformations themselves. This held out the
possibility that we could rely on the browser to
perform the transformation as well as the rendering
of the output. We would then be able simply to point
the web browser at the raw CML, and conversion
would occur automatically. and in addition, is
interpretable by the browser itself; thus it should be
possible to view the CML file directly in the browser
and have the transformation take place as the
document is rendered.

The result of this process was a set of XSLT
transforms which we term ccViz (computational
chemistry Visualizer). Browser XSLT capabilities are
sadly not yet at the stage where they can perform the
XSLT, but nevertheless ccViz has proved invaluable.

The XSLT transformation starts with simple
mark-up of quantities with their names and units
extracted and placed together. Thus instead of
looking through the CML to find the total energy, the
name “Total Energy” is marked up in colour, and its
value shown, with units attached. This is shown in
figure 1. Although the resultant page is nicer to look
at, and immediately more readable, this
transformation is very straightforward. However, two

particular further aspects of the transform deserve
attention.

4.1 SVG graphs

Firstly, of note is the production of SVG graphs from
the CML data. For a simulation output, it is valuable
to see the variation of some quantities as the
simulation progresses; of temperature, or total
energy, for example. This can be done with a table of
numbers, and indeed traditionally has been - the
simulation scientist grows used to casting their eye
down a list of numbers to gauge variation when
viewing text output files, in the absence of a better
solution. However, a line graph is much easier to
grasp. SVG is ideally suited for rendering such
graphs, as a 2D vector language. A generalized line-
graph drawing XSLT library was written, which,
when fed a series of numbers, will calculate offsets &
draw a well-proportioned graph, with appropriate
labels and units. The visualization transform can then
pull out any relevant graphable data (which may be
determined solely from the structure of the
document, independent of the simulation code used),
and produces graphs, which are then embedded
inline into the XHTML document.

The transform is performed entirely within XSLT,
without recourse to another language, which makes it
embeddable in the browser engine. An example is
shown in figure 2. The plotting engine is known as
Pelote and is freely available for use.

Thus, a mixed-namespace XHTML/SVG
document is produced, and on viewing the output
file, it is immediately easy to see the progress of the
simulation by eye. This is of great importance,
augmenting productivity by increasing the ease with
which the researcher may monitor the progress of
their simulations, particularly in a grid-enabled
environment, with many concurrent jobs running.

4.2 Jmol viewing

Since the outputs of all of our codes concern
molecular configurations, it would be extremely
useful to be able to see and manipulate the 3D
molecular structures generated by the simulation.
This is a task it is impossible to perform by eye from
a listing of coordinates. However, there is no 3D
XML language which is sufficiently widely

Figure 2: automatically generated SVG graph

Figure 1: marked up metadata and parameters

implemented in browsers to make this doable in the
fashion we managed for 2D graphs.

Fortunately, the well-established tool, Jmol[17],
which knows how to read CML files, is primarily
designed to act as an applet embedded in web-pages.
We may therefore use our XSLT transform to embed
instances of Jmol into the viewable output. However,
Jmol accepts input only as files or strings, so we
needed to find a way to pass individual different
molecular configurations from our monolithic CML
document to different individual Jmol applets
embedded in the transformed webpage. We overcame
this problem by producing multiple-namespace
XML documents: the output contains not only
XHTML and SVG, but also chunks of CML,
containing the different configurations of interest.
Since the browser is unaware of CML, it makes no
attempt to render this data. We then took advantage
of Java/Javascript interaction to enable its use.

 There is an API for controlling the browser's JS
DOM from a Java applet, called LiveConnect. We
adapted the Jmol source code so that when passed a
string which is the id of a CML tag in the embedding
document, Jmol will traverse the in-memory browser
DOM to find the relevant node, and extract data from
the CML contained therein. This enables us to have a
single XHTML document directly containing all the
CML data, which knows how to interpret itself. This
addition to Jmol has been included in the main
release, and is available from version 10.2. An
example is illustrated in figure 3.

4.3 Final document

Thus, we constructed an XSLT transform which,
when given a CML document, will output an
XHTML/SVG/CML document which is viewable in
a web-browser; in which all relevant input & output
data is marked-up and displayed; all time-varying
data is graphed, and all molecular configurations can
be viewed in three dimensions and manipulated by
the user.

Very conveniently, the XSLT transform knows
nothing about what these quantities are, nor from
what code they originate. So, we may add new
quantities to the simulation output, and they are

automatically picked up and displayed in the
browser, and graphed if appropriate.

Furthermore, it is important to note that any other
code which produces CML output is viewable in the
same way. This is useful because one of the biggest
barriers to be overcome in sharing data between
scientists from different backgrounds is a lack of
familiarity with each other’s toolsets. However, with
ccViz, we can share data between DL_POLY and
SIESTA users and view them in exactly the same
way.

This transferability applies not only to this
visualization tool, but to any analysis tools built on
CML output - a tool which analyses molecular
configurations, or which performs statistical analyses
on timestep-averaged data, for example, need be
written only once, since the raw information it needs
may be extracted from the output file the same way
for every CML-enabled code. Previously, such a tool
would rely on the output format of one particular
simulation code.

5. Data management

As mentioned above, working within a grid-enabled
environment, it is easy to generate large quantities of
data. The problem then arises of how to manage this
data. Within the eMinerals project we store our data
using the San Diego Supercomputing Centre’s SRB
[18], though there are many other solutions to
achieve similar aims of distributed data storage.

However, the major problem encountered is not
where to store the data, but how to index and retrieve
it; for both the originator of the data and their
collaborators. The eMinerals project faces a
particular challenge in this regard, since we have a
remarkably wide variety of data being generated.
XML helps in this task in two ways. Firstly, having a
common approach to output formats gives the
advantages explained in the previous section. The
second, larger, issue is the general problem of
metadata handling, and approaches have been
attempted with varying degrees of success by many
people. The eMinerals approach is explained in great
detail in [19]. However, we shall discuss it briefly
here, with particular reference to the ways in which
XML has helped us solve the problem.

There are three sorts of metadata which we have
found it useful to associate with each simulation run:

• metadata associated with the compiled
simulation code - its name, its version, any
compiled-in options, etc. Typically there will be 10
or so such items.

• metadata associated with the set up of the
simulation; input parameters, in other words.
These will vary according to the code - some codes
may use the temperature and pressure of the model
system, some may record what methods were used
to run the model, etc. Typically there will be 50 or
so such parameters

• Job-specific metadata. Since the purpose of
metadata is in order to index the job for later, easy,
retrieval, sometimes it is appropriate to attach
extracted output as metadata. For example, if a

Figure 3: Interactive Jmol applet embedded in webpage.

number of jobs are being run, with the final model
system energy being of particular interest, it is
useful to attach the value of this quantity as
metadata to the stored files in order that the jobs
may be later examined, indexed by this value.

In each of these cases, we find our life made
much easier due to the fact that our files are in an
XML format.

For the first two types of metadata, we use the
fact that CML offers <metadata> and
<parameter> elements, which have a (simplified)
structure like the following:
<metadataList>
 <metadata name=”Program”
content=”DL_POLY”>
 ...
</metadataList>

We may therefore extract all such elements and
store them as metadata values in our metadata
database.

The third type of metadata obviously requires
specific instructions for the job at hand. However,
because the output files are in XML format, we may
easily point to locations within the file such that tools
can automatically extract relevant data. This can be
done easily using an XPath expression to point at the
final energy, for example (although in fact we do not
use XPath directly - we use AgentX[20], as detailed
in the next section.)

6. Data transfer

Finally, we have also succeeded in using XML to
work towards code interoperability in the fashion
originally foreseen.

The idea of a common data format is attractive,
and as explained in section 2, would be of enormous
value. It has, however, proved elusive so far, for a
number of reasons, the discussion of which is beyond
the scope of this paper. Nevertheless, by passing
around small chunks of well-formatted, well-
specified data, and agreeing on a common dialect
with a very small vocabulary, we are able to gain
much in interoperability.

Much of the progress we have made in this area is
due to AgentX, an XML abstraction tool we have
built to help us in this task.

6.1 AgentX

AgentX is a tool originating primarily from CCLRC
Daresbury, but in the development of which
eMinerals has played an important part. A previous
version was described in [20].

At its most basic, it may be understood as, firstly,
a method of abstracting complicated XPath
expressions, and secondly as a method of abstracting
access to common data which may expressed
differing representations by various XML formats.

For example, the three-dimensional location of an
atom within a molecule is expressed in CML, as
shown in section 3.2 above, with nested
<molecule>, <atomArray>, and <atom>
elements. AgentX provides an interface by which one

can access that data in terms of the data represented
rather than the details of that representation, as
illustrated by the following, simplified, series of
pseudocode API calls.

axSelect(”Molecule”)
numAtoms = axSelect(”Atom”)
for i in range(numAtoms):
 axSelect(’xCoordinate’)
 x = axValue()
 axSelect(’yCoordinate’)
 y = axValue()
 axSelect(’zCoordinate’)
 z = axValue()

Internally, this is implemented by AgentX having
access to three documents - the CML source, an
OWL[21] ontology, and an RDF[22] mapping files.

 “Molecule” is a concept defined in the OWL
ontology; and the RDF provides a mapping between
that concept and an XPath/Xpointer expression,
which evaluates to the location of a <molecule>
tag. Furthermore, the ontology indicates that
“Molecule”s may contain “Atom”s, which may have
properties “xCoordinate”, “yCoordinate”, and
“zCoordinate”. The RDF provides mappings between
each of these concepts, and XPath expressions which
point to locations in the CML.

Thus, presented with a CML file containing a
<molecule>, it may be queried with AgentX to
retrieve the atomic coordinates by a simple series of
API calls, without the need to understand the syntax
of the CML file.

More powerfully, though, it is possible to specify
multiple mappings for one concept. That is, we may
say that a “Molecule” may be found in multiple
potential locations.

The normal CML format for specifying a
molecule is quite verbose, albeit clear. For
DL_POLY we needed to represent tens of thousands
of atoms efficiently, so we used CML’s <matrix>
element to provide a compressed format, at the cost
of losing the contextual information provided by the
CML itself.

However, by simply providing a new set of
mappings to AgentX, we could inform it that
“Molecule”s could be found in this new location in a
CML file, so all AgentX-enabled tools could
immediately retrieve molecular and atomic data
without any need for knowledge of the underlying
format change.

AgentX is implemented as an application on top
of libxml2. It is implemented primarily in C, with
wrappers to provide APIs for Perl, Python and
Fortran.

Concepts and mappings are provided for most of
the data that are in common use throughout the
project, but it is easy to add private concepts or
further mappings where the existing ones are
insufficient.

6.2 Data interchange between codes

We have incorporated AgentX into the CML-aware
version of DL_POLY. This has enabled us to use
CML-encoded atomic configurations as a primary
storage format for grid-enabled studies. Details of
studies performed with this CML-aware DL_POLY
are in [23].

Furthermore, the output of any of our CML-
emitting codes may now be directly used as input to
DL_POLY, so we can perform direct comparisons of
SIESTA and DL_POLY results.

AgentX has also been linked into a number of
other codes., including AtomEye[24]; and the CCP1
GUI[25]. It is also used as the metadata extraction
tool in the scheme described in section 5.

Thus we are now successfully using CML as a
real data interchange format between existing codes
that have been adapted to work within an XML
environment.

7. Summary

Within the eMinerals project, we have made wide,
and increasing, use of XML technologies, especially
with CML.

While working towards the goal of data
interoperability between environmentally-relevant
simulation codes, we have found several additional
areas where XML has been of particular use, and
have developed a number of tools which leverage the
power of XML technologies to enable better
collaborative research and eScience. These include:

• FoX, a pure Fortran library for general XML,
and particular CML, handling.

• Pelote, an XSLT library for generating SVG
graphs from

• ccViz, an XHTML-based CML viewing tool.
• AgentX, an XML data abstraction layer.
All of our tools are liberally licensed, and are

freely available from http://www.eminerals.org/tools
Finally, we have successfully developed methods

for true interchange of XML data between simulation
codes.

Acknowledgements

We are grateful for funding from NERC (grant
reference numbers NER/T/S/2001/00855, NE/
C515698/1 and NE/C515704/1).

References

[1] Murray-Rust, P and Rzepa, H. S., “Chemical
Markup Language and XML Part I. Basic
principles”, J. Chem. Inf. Comp. Sci., 39, 928
(1999);

 Murray-Rust, P. and Rzepa, H.S., “Chemical
Markup, XML and the World Wide Web. Part
II: Information Objects and the CMLDOM”,
J. Chem. Inf. Comp. Sci., 41, 1113 (2001).

[2] Garcia, A., Murray-Rust, P. and Wakelin, J. “The
use of CML in Computational Chemistry and

Physics Programs”, All Hands Meeting,
Nottingham, 1111. (2004)

[3] White, T.O.H. et al. “eScience methods for the
combinatorial chemistry problem of
adsorption of pollutant organic molecules on
mineral surfaces”, All Hands Meeting,
Nottingham, 773 (2005)

[4] Soler, J. M. et al, “ The Siesta method for ab
initio order-N materials simulation”, J. Phys.:
Condens. Matter, 14, 2745 (2002).

[5] Todorov, I., and Smith, W., Phil. Trans. R. Soc.
Lond. A, 362, 1835. (2004)

[6] Warren. M.C. et al., “Monte Carlo methods for
the study of cation ordering in minerals.” ,
Mineralogical Magazine 65, (2001); also
http://www.esc.cam.ac.uk/ossia/

[7] M. G. Tucker, M. T. Dove, and D. A. Keen, J.
Appl. Crystallogr. 34, 630 (2001)

[8] Watson, G.W. et al., “Atomistic simulation of
dislocations, surfaces and interfaces in MgO”
J. Chem. Soc. Faraday Trans., 92(3), 433
(1996); also http://www.bath.ac.uk/~chsscp/
group/programs/programs.html

[9] Bruin, R.P., et al., “Job submission to grid
computing environments”, All Hands
Meeting, Nottingham (2006), and

 references therein.
[10] This is not the only Fortran XML library in

existence, - see also http://nn-online.org/code/
xml/, http://sourceforge.net/projects/xml-
fortran/, http://sourceforge.net/projects/
libxml2f90 - but it is the most fully featured.
Its output support surpasses others and it is
certainly the only one with CML support.

[11] http://www.saxproject.org
[12] http://www.w3.org/DOM/
[13] Bray, T. et al., “Namespaces in XML 1.1”, W3C

Recommendation, 4 February 2004
[14] Bray, T. et al., “Extensible Markup Language

(XML) 1.1” ,W3C Recommendation, 4
February 2004

[15] Segall, M.D. et al., J. Phys.: Cond. Matt. 14(11)
pp.2717-2743 (2002)

[16] http://www.materialsgrid.org
[17] http://jmol.sourceforge.net
[18] http://www.sdsc.edu/srb
[19] Tyer, R.P. et al., “Automatic metadata capture

and grid computing”, All Hands Meeting,
Nottingham (2006) - in press.

[20] Couch, P.A. et al.,”Towards Data Integration
for Computational Chemistry” All Hands
Meeting, Nottingham 426 (2005)

[21] http://www.w3.org/TR/owl-features/
[22] http://www.w3.org/RDF/
[23]Dove, M.T. et al., “Anatomy of a grid-enabled

molecular s imula t ion s tudy: the
compressibility of amorphous silica”, All
Hands Meeting, Nottingham (2006)

[24] Li, J., “Atomeye: an efficient atomistic
configuration viewer”, Modelling Simul.
Mater. Sci. Eng., 173 (2003)

[25] http://www.cse.clrc.ac.uk/qcg/ccp1gui/

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://nn-online.org/code/xml/
http://nn-online.org/code/xml/
http://nn-online.org/code/xml/
http://nn-online.org/code/xml/
http://sourceforge.net/projects/xml-fortran/
http://sourceforge.net/projects/xml-fortran/
http://sourceforge.net/projects/xml-fortran/
http://sourceforge.net/projects/xml-fortran/
http://sourceforge.net/projects/libxml2f90
http://sourceforge.net/projects/libxml2f90
http://sourceforge.net/projects/libxml2f90
http://sourceforge.net/projects/libxml2f90
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://www.materialsgrid.org
http://www.materialsgrid.org
http://jmol.sourceforge.net
http://jmol.sourceforge.net
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

	Abstract
	1. Introduction
	1.1 Introduction to eMinerals
	1.2 Introduction to CML
	1.3 eMinerals CML background

	2. CML in eMinerals
	2.1 Data transfer between codes
	2.2 Data visualization and analysis
	2.3 Data management

	3. Fortran and XML
	3.1 wxml
	3.2 wcml

	4. Data visualization
	4.1 SVG graphs
	4.2 Jmol viewing
	4.3 Final document

	5. Data management
	6. Data transfer
	6.1 AgentX
	6.2 Data interchange between codes

	7. Summary
	Acknowledgements
	References

