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Abstract

We report a pragmatic approach to enable non-intrusive automatic metadata harvesting 
from grid-enabled simulation calculations. The framework,  called RCommands, gives 
users a set of unix line commands and a web interface to the metadata database.  The 
harvesting relies on the use of XML for output data file representation, and new 
developments of the my_condor_submit tool incorporating AgentX.

Introduction
This paper concerns a new set of tools 
developed by the eMinerals project [1] to 
facilitate automatic metadata harvesting from 
molecular-scale simulations. The key design 
requirements were that the tools should be non-
intrusive for users,  and pragmatic in design. 
This work represents a close collaboration 
between the developers and scientists.

The eMinerals project studies environmental 
processes at a molecular level, using a range of 
atomistic simulation methods. These are 
performed on the eMinerals minigrid [2], which 
integrates grid computing with grid data 
management methods based on the San Diego 
Storage Resource Broker (SRB). Job 
submission is via the my_condor_submit 
(MCS) tool [2,3], which also supports data and 
metadata management. 

Grid computing enables large scale 
combinatorial studies. For example, studies of 
molecular pollutants on mineral surfaces 
requires comparing the energies of up to 210 
members of a single family of molecules (the 
polychlorobiphenyls).  It is necessary to perform 
calculations of the energies of each molecule in 
isolation and in contact with a mineral surface, 
together with repeat calculations using different 
levels of the theory within the simulation 
method. Other examples are where calculations 
are performed over a wide sweep of one or 
more input parameters, such as temperature or 
pressure. In all these cases,  metadata is used to 
document the exact conditions of each 
simulation to enable scientists to locate 

simulation outputs easily. This replaces the role 
of the logbook or README file. 

Metadata organisation model
The CCLRC model proposes three tiers within 
which metadadata are organised. The top level 
is the study level. This level is self explanatory. 
It is possible to associate named collaborators 
with this level,  enabling collaborators to view 
and edit the metadata within a study. The next 
level down is the dataset level. This is the most 
abstract level, and users are free to interpret this 
level in a variety of ways. The third level is the 
data object level. This is the level that is 
associated with a specific URL (e.g. an SRB 
URL). The data object may include the files 
generated by a simulation run, and/or the 
outputs from subsequent data analysis.  In 
combinatorial studies, there will be many data 
objects associated with a single dataset, and 
different types of calculations within a single 
study are organised with the dataset level. 
Examples of our usage of this hierarchy are 
given in Table 1. Our tools can attach metadata 
to each of the three levels.

Metadata to capture
Typically metadata associated with the study 
and dataset levels will be added by hand,  with 
the automated metadata capture to be provided 
at the data object level (although we provide 
tools for metadata to be automatically captured 
at the other two levels as well). We define five 
types of metadata to capture:



Simulation metadata: information such as the 
user who performed the run, the date, the 
computer run on etc.

Parameter metadata: values for the parameters 
that control the simulation run, such as 
temperature, pressure, potential energy 
functions, cut-offs, number of time steps etc.

Property metadata: values of various properties 
calculations in the simulation that would be 
useful for subsequent metadata searches, 
such as final or average energy or volume.

Code metadata: information to enable users to 
determine what produced the simulation 
data, such as code name, version and 
compilation options.

Arbitrary metadata: strings to enable later 
indexing into the data,  such as whether a 
calculation is a test or production run.

The RCommand framework
To facilitate automatic metadata capture, we 
have developed a set of scriptable unix line 
commands that can upload metadata to the 
metadata database (Table 2). The RCommands 
are a standard three-tier application:
Client: A set of binary tools written in C using 

the gSOAP library. The motivation for using 
C was the requirement that the tools be as 
self-contained as possible so they can easily 
be executed server side via Globus.

Application Server: Written in Java using Axis 
as the SOAP engine and JDBC for database 
access.  The code essentially maps from 
procedural web service calls to SQL 
appropriate for the underlying database [4].

RDBMS: The backend database is served by a 
Oracle 10g RAC cluster. Although Oracle is 
used, there is no requirement for any Oracle 
specific functionality.

One of the main reasons to use a three tier 
model is that the backend databases are heavily 
firewalled and cannot be accessed directly from 
client machines.

The SOAP messages are sent to the 
application server via SSL-encrypted HTTP. 
The application server is authenticated using its 
certificate while the client requests are 
authenticated using usernames and passwords. 

The use of web service technology allows 

the network related code to be autogenerated. 
On the server, the Axis SOAP engine is 
configured to expose specified methods of 
certain classes as RPC web services. The client 
code is generated on the fly by gSOAP from the 
WSDL file produced by Axis.

Metadata Manager: the web interface 
to the metadata database
The RCommands were written primarily to 
provide tools that can be used in scripts,  but 
nevertheless they give scientists a useful 
interface to the metadata database. However, 
there are cases when a web interface is better, 
particularly when requiring a graphical 
overview that cannot be provided by a unix 
shell interface. Thus RPT has developed a web 
interface to the metadata database called the 
“Metadata Manager”. This gives an overview of 
the study level, from which the user can drill 
down into the various layers. The user can 
perform a number of the functions that are 
provided by the RCommands.

The MDM design uses the JSP Model 2 
architecture, which is based on the Model-View-
Controller (MVC) pattern. In addition, the Front 
Controller pattern is also used. The majority of 
the code in the Model layer is common to both 
the RCommands and the MDM. Hence, as with 
the RCommands, the database connectivity is 
provided using the JDBC libraries.

Collecting metadata: the role of 
XML in output files
Much of the metadata we collect is harvested 
from output data files.  To facilitate this, we have 
enabled our key simulation programs to write 
the main output files in XML, using the 
Chemical Markup Language [5]. CML specifies 
a number of XML element types for 
representing lists of data, including:
metadataList: contains general properties 

of the simulation, such as code version;
parameterList: contains parameters for 

with the simulation;
propertyList: contains property values 

computed by the simulation.

Study Molecular dynamics simulation of silica 
under pressure

Ab initio study of dioxin molecules on clay 
surface

Data set Identified by the sample size and the 
interatomic potential model

Identified by number of chlorine atoms in 
the molecule and the specific surface site

Data object Collection on the SRB containing all input 
and output files

Collection on the SRB containing all input 
and output files

Table 1. Examples of how the study / dataset / data object levels have been used to organise data.



It is usual to have more than one of each list, 
particularly the propertyList. These lists 
correspond to the metadata types described 
above. An example is given in Figure 1.

Automatic metadata capture within a 
grid computing environment
As described in the introduction, the eMinerals 
scientists run their simulations using the MCS 
tool [3]. MCS deals with four types of metadata:
1. An arbitrary text string specified by the user.
2. Environment metadata automatically 

captured from the submission and execution 
environment.

3. Metadata extracted from the first 
metadataList and parameterList 
elements described in the previous section.

4. Additional metadata extracted from the 
XML documents. These specifications take 
the form of expressions with a syntax similar 
to XPath expressions. These are parsed by 
MCS and broken down into a single term 
used to provide the context of the metadata 
(such as ‘FinalEnergy’) and a series of 
calls to be made to the AgentX library [6].

MCS uses calls to the AgentX library to query 
documents for data with a specific context. For 
example, AgentX could be used to find the total 
energy of a system calculated during a 

simulation. The user specified expression might 
have the form:
AgentX = FinalEnergy, output.xml:/
PropertyList[title='rolling 
averages']/Property
[dictRef='dl_poly:eng_tot']

The term providing the name of the metadata 
item is 'FinalEnergy' and the document to 
be queried is output.xml. The string 
following ‘output.xml:’   is parsed by MCS 
and converted to a series of AgentX library 
calls. In this example, AgentX is asked to locate 
all the data sets in output.xml that relate to 
the concept ‘property’ and which have the 
reference ‘dl_poly:eng_tot’. The value of 
this property is extracted and associated with 
the term FinalEnergy. The RCommands are 
then used to store this name value pair in the 
metadata database.

AgentX works with a specification of ways 
to locate data in documents (such as a CML 
document) that have a well defined content 
model. There are two components to the 
AgentX framework: 
1. An ontology that specifies terms relating to 

concepts of interest in the context of this 
work.  These terms relate to classes of real 
world entities of interest and to their 
properties. The ontology is specified using 
OWL and serialised using RDF/XML.

RCommand Action
Rinit Starts an RCommand session by setting up session files
Rpasswd Changes the password for access to the metadata database
Rcreate Creates study, dataset and data object levels, associating the lower levels with the 

level immediate above, adding a name to each level, adding a metadata description 
and topic association in the case of creating a study, and associating a URI in the case 
of creating a data object.

Rannotate Adds metadata. In the case of studies or datasets, this enables a metadata description, 
and in the case of datasets and data objects it also enables metadata name/value 
pairs. It also enables more topics to be associated with a study.

Rls Lists entities within the metadata database. With no parameters, it lists all studies, and 
with parameters it will list the entries within a study or dataset level. It can also be used 
to list all possible collaborators or science topics.

Rget Gives the metadata associated with a given study, dataset or data object. In the case 
of a study, it can also list associated collaborators and science topics.

Rrm Removes entities or parameters from the metadata database.
Rchmod Add or remove co-investigators from a study.
Rsearch Search the metadata database, tuned to search within different levels and against 

descriptions, name/value pairs and parameters.
Rexit Ends an RCommand session, cleaning up session files.

Table 2. The ten RCommand unix line commands.



2. The mappings, which are used to relate terms 
in the ontology to document fragment 
identifiers.  For XML documents, these 
fragment identifiers are XPointer expressions 
that may be evaluated to locate data sets and 
data elements in the documents. Each format 
is associated with its own set of mappings 
and serialised using RDF/XML. 

AgentX is able to retrieve information from 
arbitrary XML documents, as long as mappings 
are provided. Mappings exist for an increasing  
number of simulation codes. 

Post-processing using the RParse tool
Although XML output will capture all 
information associated with the simulation, it is 
inevitable that the automatic tools may miss 
some of the metadata; it is not always obvious 
at the start of a piece of work what properties 
are of most interest. We have used the AgentX 
libraries to develop the Rparse tool to 
retrospectively extract metadata by scanning 
over the XML files contained within the data 
objects in a single dataset. Rparse uses the SRB 
Scommands, the RCommands, and the AgentX 
library. The user specifies a collection in the 
SRB, the relevant output files, AgentX query 
expressions, and the dataset into which the 
metadata is to be inserted.

Examples of applications
We have used the metadata tools for the 
following applications:
‣ collaborative studies of adsorption of 

molecules onto mineral surfaces;

‣ parameterisation of computations of PCB 
molecules [7];

‣ study of silica glass under pressure [8]
‣ sharing literature search results, with the data 

object linking to the on-line publication URL.
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<?xml version="1.0" encoding="UTF-8"?>
<cml xmlns="http://www.xml-cml.org/schema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<metadataList>
 <metadata name="identifier" content="DL_POLY version 3.06 / March 2006"/>
</metadataList>

<parameterList title="control parameters">
 <parameter title="simulation temperature" name="simulation temperature"
 dictRef="dl_poly:temperature">
 <scalar dataType="xsd:double" units="dl_polyUnits:K"> 50.0 </scalar>
 </parameter>
</parameterList>

<propertyList title="rolling averages">
 <property title="total energy" dictRef="dl_poly:eng_tot">
 <scalar dataType="xsd:double" units="dl_polyUnits:eV_mol.-1"> -2.7360E+04 
   </scalar>
 </property>
</propertyList>

</cml>
Figure 1. Extracts of a CML output file, showing examples of the 

metadataList, parameterList and propertyList containers.
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