
Automatic metadata capture and grid computing

RP Tyer, PA Couch, K Kleese van Dam, IT Todorov
 CCLRC, Daresbury Laboratory, Warrington, Cheshire WA4 4AD

RP Bruin, TOH White, AM Walker, KF Austen, MT Dove
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ

MO Blanchard
Royal Institution, 21 Albemarle Street, London W1S 4BS

Abstract

We report a pragmatic approach to enable non-intrusive automatic metadata harvesting
from grid-enabled simulation calculations. The framework, called RCommands, gives
users a set of unix line commands and a web interface to the metadata database. The
harvesting relies on the use of XML for output data file representation, and new
developments of the my_condor_submit tool incorporating AgentX.

Introduction
This paper concerns a new set of tools
developed by the eMinerals project [1] to
facilitate automatic metadata harvesting from
molecular-scale simulations. The key design
requirements were that the tools should be non-
intrusive for users, and pragmatic in design.
This work represents a close collaboration
between the developers and scientists.

The eMinerals project studies environmental
processes at a molecular level, using a range of
atomistic simulation methods. These are
performed on the eMinerals minigrid [2], which
integrates grid computing with grid data
management methods based on the San Diego
Storage Resource Broker (SRB). Job
submission is via the my_condor_submit
(MCS) tool [2,3], which also supports data and
metadata management.

Grid computing enables large scale
combinatorial studies. For example, studies of
molecular pollutants on mineral surfaces
requires comparing the energies of up to 210
members of a single family of molecules (the
polychlorobiphenyls). It is necessary to perform
calculations of the energies of each molecule in
isolation and in contact with a mineral surface,
together with repeat calculations using different
levels of the theory within the simulation
method. Other examples are where calculations
are performed over a wide sweep of one or
more input parameters, such as temperature or
pressure. In all these cases, metadata is used to
document the exact conditions of each
simulation to enable scientists to locate

simulation outputs easily. This replaces the role
of the logbook or README file.

Metadata organisation model
The CCLRC model proposes three tiers within
which metadadata are organised. The top level
is the study level. This level is self explanatory.
It is possible to associate named collaborators
with this level, enabling collaborators to view
and edit the metadata within a study. The next
level down is the dataset level. This is the most
abstract level, and users are free to interpret this
level in a variety of ways. The third level is the
data object level. This is the level that is
associated with a specific URL (e.g. an SRB
URL). The data object may include the files
generated by a simulation run, and/or the
outputs from subsequent data analysis. In
combinatorial studies, there will be many data
objects associated with a single dataset, and
different types of calculations within a single
study are organised with the dataset level.
Examples of our usage of this hierarchy are
given in Table 1. Our tools can attach metadata
to each of the three levels.

Metadata to capture
Typically metadata associated with the study
and dataset levels will be added by hand, with
the automated metadata capture to be provided
at the data object level (although we provide
tools for metadata to be automatically captured
at the other two levels as well). We define five
types of metadata to capture:

Simulation metadata: information such as the
user who performed the run, the date, the
computer run on etc.

Parameter metadata: values for the parameters
that control the simulation run, such as
temperature, pressure, potential energy
functions, cut-offs, number of time steps etc.

Property metadata: values of various properties
calculations in the simulation that would be
useful for subsequent metadata searches,
such as final or average energy or volume.

Code metadata: information to enable users to
determine what produced the simulation
data, such as code name, version and
compilation options.

Arbitrary metadata: strings to enable later
indexing into the data, such as whether a
calculation is a test or production run.

The RCommand framework
To facilitate automatic metadata capture, we
have developed a set of scriptable unix line
commands that can upload metadata to the
metadata database (Table 2). The RCommands
are a standard three-tier application:
Client: A set of binary tools written in C using

the gSOAP library. The motivation for using
C was the requirement that the tools be as
self-contained as possible so they can easily
be executed server side via Globus.

Application Server: Written in Java using Axis
as the SOAP engine and JDBC for database
access. The code essentially maps from
procedural web service calls to SQL
appropriate for the underlying database [4].

RDBMS: The backend database is served by a
Oracle 10g RAC cluster. Although Oracle is
used, there is no requirement for any Oracle
specific functionality.

One of the main reasons to use a three tier
model is that the backend databases are heavily
firewalled and cannot be accessed directly from
client machines.

The SOAP messages are sent to the
application server via SSL-encrypted HTTP.
The application server is authenticated using its
certificate while the client requests are
authenticated using usernames and passwords.

The use of web service technology allows

the network related code to be autogenerated.
On the server, the Axis SOAP engine is
configured to expose specified methods of
certain classes as RPC web services. The client
code is generated on the fly by gSOAP from the
WSDL file produced by Axis.

Metadata Manager: the web interface
to the metadata database
The RCommands were written primarily to
provide tools that can be used in scripts, but
nevertheless they give scientists a useful
interface to the metadata database. However,
there are cases when a web interface is better,
particularly when requiring a graphical
overview that cannot be provided by a unix
shell interface. Thus RPT has developed a web
interface to the metadata database called the
“Metadata Manager”. This gives an overview of
the study level, from which the user can drill
down into the various layers. The user can
perform a number of the functions that are
provided by the RCommands.

The MDM design uses the JSP Model 2
architecture, which is based on the Model-View-
Controller (MVC) pattern. In addition, the Front
Controller pattern is also used. The majority of
the code in the Model layer is common to both
the RCommands and the MDM. Hence, as with
the RCommands, the database connectivity is
provided using the JDBC libraries.

Collecting metadata: the role of
XML in output files
Much of the metadata we collect is harvested
from output data files. To facilitate this, we have
enabled our key simulation programs to write
the main output files in XML, using the
Chemical Markup Language [5]. CML specifies
a number of XML element types for
representing lists of data, including:
metadataList: contains general properties

of the simulation, such as code version;
parameterList: contains parameters for

with the simulation;
propertyList: contains property values

computed by the simulation.

Study Molecular dynamics simulation of silica
under pressure

Ab initio study of dioxin molecules on clay
surface

Data set Identified by the sample size and the
interatomic potential model

Identified by number of chlorine atoms in
the molecule and the specific surface site

Data object Collection on the SRB containing all input
and output files

Collection on the SRB containing all input
and output files

Table 1. Examples of how the study / dataset / data object levels have been used to organise data.

It is usual to have more than one of each list,
particularly the propertyList. These lists
correspond to the metadata types described
above. An example is given in Figure 1.

Automatic metadata capture within a
grid computing environment
As described in the introduction, the eMinerals
scientists run their simulations using the MCS
tool [3]. MCS deals with four types of metadata:
1. An arbitrary text string specified by the user.
2. Environment metadata automatically

captured from the submission and execution
environment.

3. Metadata extracted from the first
metadataList and parameterList
elements described in the previous section.

4. Additional metadata extracted from the
XML documents. These specifications take
the form of expressions with a syntax similar
to XPath expressions. These are parsed by
MCS and broken down into a single term
used to provide the context of the metadata
(such as ‘FinalEnergy’) and a series of
calls to be made to the AgentX library [6].

MCS uses calls to the AgentX library to query
documents for data with a specific context. For
example, AgentX could be used to find the total
energy of a system calculated during a

simulation. The user specified expression might
have the form:
AgentX = FinalEnergy, output.xml:/
PropertyList[title='rolling
averages']/Property
[dictRef='dl_poly:eng_tot']

The term providing the name of the metadata
item is 'FinalEnergy' and the document to
be queried is output.xml. The string
following ‘output.xml:’ is parsed by MCS
and converted to a series of AgentX library
calls. In this example, AgentX is asked to locate
all the data sets in output.xml that relate to
the concept ‘property’ and which have the
reference ‘dl_poly:eng_tot’. The value of
this property is extracted and associated with
the term FinalEnergy. The RCommands are
then used to store this name value pair in the
metadata database.

AgentX works with a specification of ways
to locate data in documents (such as a CML
document) that have a well defined content
model. There are two components to the
AgentX framework:
1. An ontology that specifies terms relating to

concepts of interest in the context of this
work. These terms relate to classes of real
world entities of interest and to their
properties. The ontology is specified using
OWL and serialised using RDF/XML.

RCommand Action
Rinit Starts an RCommand session by setting up session files
Rpasswd Changes the password for access to the metadata database
Rcreate Creates study, dataset and data object levels, associating the lower levels with the

level immediate above, adding a name to each level, adding a metadata description
and topic association in the case of creating a study, and associating a URI in the case
of creating a data object.

Rannotate Adds metadata. In the case of studies or datasets, this enables a metadata description,
and in the case of datasets and data objects it also enables metadata name/value
pairs. It also enables more topics to be associated with a study.

Rls Lists entities within the metadata database. With no parameters, it lists all studies, and
with parameters it will list the entries within a study or dataset level. It can also be used
to list all possible collaborators or science topics.

Rget Gives the metadata associated with a given study, dataset or data object. In the case
of a study, it can also list associated collaborators and science topics.

Rrm Removes entities or parameters from the metadata database.
Rchmod Add or remove co-investigators from a study.
Rsearch Search the metadata database, tuned to search within different levels and against

descriptions, name/value pairs and parameters.
Rexit Ends an RCommand session, cleaning up session files.

Table 2. The ten RCommand unix line commands.

2. The mappings, which are used to relate terms
in the ontology to document fragment
identifiers. For XML documents, these
fragment identifiers are XPointer expressions
that may be evaluated to locate data sets and
data elements in the documents. Each format
is associated with its own set of mappings
and serialised using RDF/XML.

AgentX is able to retrieve information from
arbitrary XML documents, as long as mappings
are provided. Mappings exist for an increasing
number of simulation codes.

Post-processing using the RParse tool
Although XML output will capture all
information associated with the simulation, it is
inevitable that the automatic tools may miss
some of the metadata; it is not always obvious
at the start of a piece of work what properties
are of most interest. We have used the AgentX
libraries to develop the Rparse tool to
retrospectively extract metadata by scanning
over the XML files contained within the data
objects in a single dataset. Rparse uses the SRB
Scommands, the RCommands, and the AgentX
library. The user specifies a collection in the
SRB, the relevant output files, AgentX query
expressions, and the dataset into which the
metadata is to be inserted.

Examples of applications
We have used the metadata tools for the
following applications:
‣ collaborative studies of adsorption of

molecules onto mineral surfaces;

‣ parameterisation of computations of PCB
molecules [7];

‣ study of silica glass under pressure [8]
‣ sharing literature search results, with the data

object linking to the on-line publication URL.

We are grateful for funding from NERC (grant
reference numbers NER/T/S/2001/00855, NE/
C515698/1 and NE/C515704/1).

References
1. MT Dove et al. The eMinerals project:

developing the concept of the virtual organisation
to support collaborative work on molecular-scale
environmental simulations. Proceedings of All
Hands 2005, pp 1058–1065, 2005

2. M Calleja et al. Collaborative grid infrastructure
for molecular simulations: The eMinerals
minigrid as a prototype integrated compute and
data grid. Mol. Simul. 31, 303–313 (2005)

3. RP Bruin et al. Job submission to grid computing
environments. Proceedings of All Hands 2006

4. M Doherty, K Kleese, S Sufi. "Database Cluster
for e-Science". Proceedings of UK e-Science All
Hands Meeting 2003, pp 268–271, 2003

5. TOH White et al. Development and Use of CML
in the eMinerals project. Proceedings of All
Hands 2006

6. PA Couch et al. Towards Data Integration for
Computational Chemistry. Proceedings of All
Hands 2005, pp 426–432 (2005)

7. KF Austen et al., Using escience to calibrate our
tools: parameterisation of quantum mechanical
calculations with grid technologies. Proceedings
of All Hands 2006

8. MT Dove et al. Anatomy of a grid-enabled
molecular simulation study: the compressibility
of amorphous silica. Proceedings of All Hands
2006

<?xml version="1.0" encoding="UTF-8"?>
<cml xmlns="http://www.xml-cml.org/schema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<metadataList>
 <metadata name="identifier" content="DL_POLY version 3.06 / March 2006"/>
</metadataList>

<parameterList title="control parameters">
 <parameter title="simulation temperature" name="simulation temperature"
 dictRef="dl_poly:temperature">
 <scalar dataType="xsd:double" units="dl_polyUnits:K"> 50.0 </scalar>
 </parameter>
</parameterList>

<propertyList title="rolling averages">
 <property title="total energy" dictRef="dl_poly:eng_tot">
 <scalar dataType="xsd:double" units="dl_polyUnits:eV_mol.-1"> -2.7360E+04
 </scalar>
 </property>
</propertyList>

</cml>
Figure 1. Extracts of a CML output file, showing examples of the

metadataList, parameterList and propertyList containers.

	Abstract
	Introduction
	Metadata organisation model
	Metadata to capture
	The RCommand framework
	Metadata Manager: the web interface to the metadata database
	Collecting metadata: the role of XML in output files
	Automatic metadata capture within a grid computing environment
	Post-processing using the RParse tool
	Examples of applications
	References

