
A Lightweight, Scriptable, Web-based Frontend to the SRB

Toby O. H. White1, Rik P. Tyer2, Richard P. Bruin1, Martin T. Dove1, Katrina F. Austen1

1Department of Earth Sciences, Downing Street, University of Cambridge. CB2 3EQ
2CCLRC Daresbury Laboratory, Daresbury, Warrington. WA4 4AD

Abstract

The San Diego Supercomputing Centre’s Storage Resource Broker (SRB) is in wide use in our
project. We found that none of the supplied interfaces fulfilled our needs, so we have developed a
new interface, which we call TobysSRB. It is a web-based application with a radically simplified
user interface, making it easy yet powerful to operate for novices and experts alike. The web
interface is easily extensible, and external viewers may be incorporated. In addition, it has been
designed such that interactions with TobysSRB are easily automatable, with a stable, well-defined
and well-documented HTTP API, conforming to the REST (Representational State Transfer)
philosophy. The focus has been on lightweightness, usability and scriptability.

Introduction

Introduction to the SRB

The Storage Resource Broker (SRB) is a distributed
data storage product written and maintained by the
San Diego Supercomputing Centre (SDSC)[1]. It is
in wide use throughout the UK eScience community
[2].

It is intended to allow users to access files, and
collections of files seamlessly within a distributed
environment. It provides an abstraction layer
between the storage of data, which may be in
multiple locations, on multiple filesystems, and the
access of data, which is presented through a unified
interface, transparent to the details of storage type or
location.

An SRB system consists of four components:
• The MCAT (Metadata Catalogue) database,

which stores internal SRB information - most
importantly, mappings between a file’s SRB
address, and its storage location.

• The MCAT SRB server, which contains much
of the logic for manipulating files and internal
SRB state.

• The SRB server, which exports an interface
across the network, accepting requests from
clients, and translating these requests into
interactions with the MCAT database and MCAT
server.

• The SRB client, which is what the user or
developer sees, and interacts with, and which
exports the transparent, seamless, abstraction layer
which is the point of the SRB.

Within the eMinerals project, we have been using
the SRB for several years now as our primary data
repository. It enables us to share data across the
project in a very simple fashion. We have also built
workflow tools using the SRB as a universally-

accessible storage layer[3]. These tools are widely
used across the project, and several large-scale
studies have been performed using them.

SRB interfaces

From the user’s perspective, regardless of the
interface used, the SRB appears much like a
distributed filesystem, with data in files, and files in
collections that may be nested like directories.

Interfaces for users

SDSC provide three user-accessible front-ends to the
SRB, through which end-users may interact with
files, and navigate through the collections and
datasets of the SRB:
• The Scommands, which are a series of command-

line tools for Unix-like operating systems, written
in C, which very roughly mimic native POSIX
commands; thus to list the contents of a collection,
Sls is used, where ls lists directory contents on a
traditional Unix file system.

• MySRB, which is a web-based graphical interface.
• InQ, which is a native graphical MS Windows

application.

In addition, there are a number of third-party user
interfaces available, which all support subsets of the
SRB’s functionality[4].

Interfaces for developers

In addition, there are a number of officially
supported SRB APIs available:

• There is a fully-featured C API, which is the
primary developers’ interface.

• Jargon is a Java API which exports the full
range of functionality.

• Matrix exports a WS (Web Services) SRB
interface, which is built on top of Jargon.

Again, there are also a number of third-party
interfaces. Mostly these consist of language-specific
wrappers around the C API.

Use of the SRB

The SRB’s primary selling point is as a way to
abstract access to files stored in multiple logical
locations, through a single interface, which bears a
resemblance to a hierarchical filesystem. In addition,
it offers a number of additional features - limited
user-editable metadata, and replication of files.

However, within our project, we have found that
the only aspect of the SRB that we are interested in is
the common view of a familiar filesystem-like
interface.

This manner of usage is encouraged by the
analogies that can be drawn between the Scommands
and native unix filesystem tools.

Indeed, for both SRB versions 2 and 3, there are
filesystem plugins, which enable the use of the SRB
transparently, and allow an SRB repository to be
mounted as a native filesystem within Linux, and a
similar plugin to Windows Explorer, which enables
an analogous interface for Windows.

Given that we use SRB only as a network
filesystem, many of the features offered by the
existing interfaces are beyond our needs.

Deficiencies in current methods of SRB
interaction

User interfaces

The Scommands are the SRB developers'
recommended interface. However, navigating an
SRB repository through the Scommands has many of
the same strengths and drawbacks as navigating a
normal filesystem from the command line.

In its disfavour is the fact that visualizing a
directory structure, and navigating through it when
you are not sure of the destination, can be clumsy
from the command line; and for users unused to
command-line interaction, it is a daunting prospect.
Indeed it is for this reason that graphical file system
browsers were invented in the 1970s.

Furthermore, a network filesystem can never
deliver the performance of a local filesystem, due to
network latency. This is a familiar problem, from
which all network filesystems (NFS, AFS) suffer.
Thus Scommand-ing one's way through a repository
is always slower and less efficient even than
navigating through a filesystem using the analogous
native unix tools.

A further deficiency is the necessity to install the
Scommands on any system where access is required.
It is impossible to connect to the SRB using this
method from an arbitrary computer which knows
nothing about the SRB. Furthermore, even when the
Scommands are installed, it is necessary for each
user individually to be set up correctly to use the
SRB - thus it is not possible to, for example, lean
over someone's shoulder, while they are logged on,
and quickly retrieve a file from your own SRB
collection.

In its favour is the fact that, since the interface is
expressed and used through a unix shell, SRB
interaction can be very easily incorporated in a script,
whether written in shell script, or in a higher-level
language such as Perl or Python.

However, again, network effects conspire to make
repeated Sls's a great deal slower than lots of ls's.
In addition, our experience has been that the SRB is
not sufficiently robust to allow scripting of many
SRB interactions (on the order of a few hundred in
less than a minute). This is due to an architectural
flaw in the SRB server, which will report success for
a transaction, even before the database has been
updated, thus breaking the atomicity of SRB
operations. Clearly this introduces an enormous
number of potential race conditions. It is therefore
impossible to set up the SRB infrastructure to allow
high volumes of requests of the sort which are
essentially trivial for a real filesystem. Repeated
failures of various sorts will be seen.

MySRB and InQ both try to solve some of the
problems associated with the Scommands, in
different ways.

InQ primarily tries to solve the problems
associated with a textual interface. As a native
Windows application, it must be installed locally, on
a Windows computer. Thus, it does not solve the
problems associated with needing to be at a
particular computer. It does at least not require
setting up for each user - it can be used to retrieve
anyone's files from a single installation.

MySRB is a web-based interface to the SRB. It is
a CGI script, implemented in C, which provides a
stateful session of limited duration, and most SRB
actions are possible through it. Since it is a web
application, it is accessible from anywhere with a
working web-browser and internet connection.

However, it suffers from a number of deficiencies
in its user interface (UI). Firstly, due to the necessity
to make available through MySRB almost all of the
functionality of the SRB, the interface suffers from
complexity and overcrowding.

Secondly, when using it as a simple method for
retrieving files, there are two particular irritations
which render it frustrating for the expert, and
confusing for the novice.

• It second-guesses the browser’s ability to show
files - if a request is made to view a file of a type
MySRB is not aware of, or indeed that MySRB
thinks cannot be displayed by the browser, then
MySRB will escape all HTML-sensitive
characters, and insert the resultant translated file
into an HTML frame between <PRE> tags. This
naturally renders it impossible for the browser to
render the output sensibly when retrieving an SVG
file.

• When downloading a file, MySRB
communicates with the browser such that every
time, the browser’s save dialogue tries to name the
file MySRB.cgi.

Developer interfaces

In terms of scriptability, the available developers
APIs did not fit our needs either.

Jargon is in Java, which is of course only useful
for Java applications. Very few of our tools are
written in Java; and Java is not conducive to quick
scripting of the sort that the Scommands can be used
for.

Matrix is a web-services API, and as such is
nominally platform-independent. However, in
practice, it requires a large investment in the stack of
SOAP/WS infrastructure on any computer which
must communicate with it. Again, there is no sense in
which it can be used in a script-like fashion.

Of the third-party interfaces, none suited our
purposes.

Motivation

A further problem with all the available interfaces,
with the obvious exceptions of MySRB and Matrix,
is that they all require communication between client
and server over a number of uncommon ports;
primarily port 5544 for MCAT communication, and
variable ports from 65000 upwards. This makes use
of the SRB from behind firewalls tricky. Clearly
MySRB and Matrix work entirely over ports 80 or
443, which are almost universally available.

So, in summary, the main problems we perceived
with the available methods of interacting with the
SRB were:
I. The UIs of the available graphical approaches

were insufficiently user-friendly
II. None of the interfaces available offered

sufficiently robust scriptability.
III. Only the Scommands offered any scriptability

at all, but required local installation and setup
for each user, and could not be used from
behind many firewalls.

To this end, we have built a new SRB frontend,
which we call TobysSRB, which ameliorates all of
these issues.

Approaches to a solution

The primary motivation for the creation of
TobysSRB was to solve problem I above - we needed
a very simple UI for retrieval of files from the SRB;
its initial intended audience was in fact
undergraduate students, who had little to no
knowledge of the software involved, and who had
little to no control over the computers from which
they need to access the SRB.
The following requirements were thus essential.
• It should allow the very easy retrieval and viewing

of files.
• It should not require any installation on client

machines.

It was clear that a web-based solution would best
fulfil these criteria, since web browsers are
universally available, and a small amount of
forethought combined with extensive user testing and
feedback would ensure that the UI could be made

sufficiently transparent that novice users would feel
at ease, solving problem I above.

In addition, since we also perceived problems II
and III above, we realised that, with proper design, a
web-based solution could fix these also.

Problem II can only sensibly be solved by
wrapping the Scommands - a non-robust, but
scriptable, interface - behind a layer which performs
proper error and timeout checking. This layer can as
well be a web-based application as any other sort.

Problem III is of course solved in the same way -
by making the interface web-accessible, it is then
accessible anywhere.

Overview of TobysSRB

TobysSRB is implemented as a CGI script, written in
Python, and all its interactions with the SRB are
performed by executing appropriate Scommands
using Python's subprocess handling.

For security, it is written such that it will only
work over an HTTPS connection; the only
information exposed to eavesdroppers is that a
connection is being made; all data is encrypted.

It requires no special configuration on the server
other than that required for running CGI scripts in
general; and of course that the Scommands be
installed somewhere on the server.

In this section, we shall explain firstly its internal
implementation, then the interfaces presented to the
user, both through a web-browser, and through its
web-accessible API.

Internal implementation

Configuration and authentication

Configuration of the Scommands for a user involves
the creation of a directory, ~/.srb, and two files
therein, ~/.MdasEnv and ~/.MdasAuth.
Whenever the user wishes to interact with the SRB,
they must first issue the command Sinit. This
authenticates them against the server, and then
creates a file within ~/.srb which keeps the SRB
session's state (which consists only of the location of
the current SRB collection). The session should be
ended with an Sexit which merely clears up this
session file.

(Of course, frequently one will pause in the
middle of a session, and forget to do an Sexit
before logging out, with the result that the ~/.srb
directory quickly fills up with stale session files.)

mdasCollectionHome '/home/tow.eminerals'

mdasDomainHome 'eminerals'

srbUser 'tow'

srbHost 'forth.dl.ac.uk'

srbPort '5544'

defaultResource 'CambsLake'

AUTH_SCHEME 'ENCRYPT1'

Figure 1: Example .MdasEnv File

A typical example of a .MdasEnv file is shown
in figure 1. (The .MdasAuth file contains nothing
but a password.) Note, however, that much of the
contents is either redundant, or irrelevant to the
client.

In almost all cases, the home directory can be
constructed from the username - and in any case, the
client ought not to need to specify their home
directory when the server will also know. The client
ought not to care about the authentication
mechanism, when the server could tell it. Since there
is a default port, it should not be necessary to specify
it unless using a non-default value.

Thus, in fact the only information that the client
should need to know is username, password, and
location of the MCAT server. In our case, since
TobysSRB is wrapping all SRB details, the client
need not even know this last. All the user need
specify to a given TobysSRB instance are username
and password. All additional information is held by
TobysSRB in a configuration file.

So in a given session with TobysSRB, the
username and password are provided as CGI
variables. TobysSRB then constructs a temporary
directory, within which it constructs two files,
corresponding to .MdasAuth and .MdasEnv. All
necessary Scommands are then executed as follows:
MdasEnvFile=$TMPDIR/MdasEnvFile \
MdasAuthFile=$TMPDIR/MdasAuthFile \
Scommand
and at the end of a TobysSRB session, the files and
the temporary directory are removed.

A brief note on password security: since all
TobysSRB sessions occur over HTTPS, all
information on passwords is secure from
eavesdropping. However, it may be visible, as a CGI
variable, in the URL bar of a web-browser. In order
to obviate the possibility of password stealing by
looking over shoulders, it is trivially obscured by
firstly XORing the password character by character,
and then encoding all URL-sensitive characters. This
makes the password essentially immune to being
picked up by a glance.

Session state

One of the main reasons why MySRB is difficult to
script against is the fact that it is a stateful
application, and cookie-handling is used to keep the
session alive. This is illustrated in figure 2.

This has the advantage, of course, that the user is
not required to reauthenticate every time they
perform some action - rather the authentication data
is held in a cookie. And since the authentication
information required for MySRB is not merely
username and password, but the full gamut of
configuration information described in the previous
section, it would be obnoxious to require typing in
every time.

Unfortunately, of course, it also means that any
client must be prepared to handle cookies to interact
with MySRB, which effectively restricts clients to
browsers, and excludes simple scripts. It also makes
the internal workings of MySRB significantly more

complicated, since session-handling logic is required.
However, TobysSRB works in an entirely

stateless fashion, as shown in figure 3. This
effectively means that reauthentication occurs on
every action. However, this can be made transparent
to the user - once the user has authenticated, every
page that is returned from TobysSRB has a
username/password form, but the values are filled in
by default, so the user need not worry about them.

For a session consisting of multiple commands ,
this stateless approach theoretically involves an
increase in load on the server side, since now a
temporary directory and files must be created and
destroyed for every request. (For single requests
there is obviously no difference.) However, in
practice, we have found this increase entirely
unmeasurable. And from the client’s perspective, any
marginal increase in time is insignificant compared
with the time required for each interaction between
TobysSRB and the underlying SRB servers.

In addition, MySRB need only initialize the SRB
session once for each MySRB session, whereas
TobysSRB in principle must reinitialize every time.
However, since TobysSRB is stateless, and the only
purpose of Sinit is to set the current directory, in
fact we need not initialize our session at all. If all
SRB locations are specified as full (not relative)
paths, then Scommands all work perfectly correctly
without initialization; and this also obviates the need
for us to worry about clearing up stale session files
later on.

Furthermore, by keeping the implementation
entirely stateless, it means that the interface is
trivially scriptable, since no cookie-handling need be
performed by the client.

Interaction with the SRB and error handling

As described, interaction with the SRB is performed
by Scommands executed from within TobysSRB.
Some notes on implementation here are worthwhile.

Firstly, since the Scommands are being executed,
by the shell interpreter, it is vitally important that any
input that is passed in from the user is checked
before constructing the command line, otherwise
malicious shell commands could be easily executed
by the user. To this end, we check for safety all user
input that will be passed to the command line, and
escape any characters in SRB filenames that are also
shell metacharacters.

 This task is made more difficult by the fact that
(prior to version 3.4.1 of the SRB) there is no
definitive list of what characters are allowable in
SRB filenames - indeed different official SRB tools
allow different sets of characters, and files created
through one tool may not be retrievable through
another (vide frequent discussions on SRB-Chat);
and the list of problematic characters varies between
SRB versions. Therefore, we simply disallow any
characters that might cause problems on any version
of the SRB. This does prevent certain filenames,
which are otherwise legal in recent SRB versions,
from being used, but we feel our conservative
approach is entirely justified.

Secondly, interactions with the SRB are never
entirely robust. For example, occasionally an
Scommand will hang indefinitely, or return with an
obviously wrong error message.

This is excusable (or at least it is feasible to work
with) when using the Scommands by hand - one can
easily interrupt a hanging command; or re-execute
one that has returned wrongly. However, when
automating interactions, it is a major drawback, and
thus TobysSRB is intended to wrap the Scommands
and insulate the user against such vagaries.

Thus, each command is executed in a subprocess
with a timeout, and TobysSRB repeatedly checks the
status of each command issued; should the timeout
be repeatedly exceeded, TobysSRB will return an
appropriate error to the user.

Furthermore, the error handling of the
Scommands is highly inconsistent - no documented
scheme of error codes exists, so the cause of errors
can only be deduced from reading the output of the
commands; some of which are output on stdout,
some on stderr; and there appears to be no pattern to
their format. Furthermore, some error codes are
overloaded, and the meaning of the error can only be
deduced from the context of the request.

Therefore TobysSRB will also inspect both the
stdout and stderr returned by the Scommands, and
parse them to discover the cause of the error. Where
the error appears to be of the type that is known to
occur spuriously, the Scommand will be reissued a
few times in the hope that it will succeed.

Finally, if the error occurs repeatedly, then
TobysSRB will return to the user the error message,
accompanied by an HTTP status code indicating the
type of error.

As far as possible, TobysSRB will report error
codes in accordance with the meanings assigned by
HTTP/1.1[5]. Thus, 200 is only returned if the
request was successful. If an upload was successfully
performed the status is 201. If a request fails due to
an authentication error, then the status is 401, while if
the failure is due to an SRB timeout, the status is
408, and so on.

This enables TobysSRB to fit within the general
framework of HTTP applications, and means any
scripts written against it can deal with failures
robustly and intelligently.

Extensibility

Because TobysSRB is written in well-constructed
Python, with none of the complications associated
with session management, it is a bare 500 lines long.
Its control flow is thus easily grasped, and it is easily
extended.

This was illustrated when a requirement arose to
process XML files specially, by providing additional
links to an external service which would transform
the XML into a form more easily viewable in a web
browser (described in further detail in [6]). It was a
matter of ten extra lines of code to include this
additional functionality.

Web application UI

For security, TobysSRB will only work over an
HTTPS connection; if accessed over unencrypted
HTTP, it will refuse to grant access, and try to
redirect the browser to an appropriate HTTPS
address.

On first accessing TobysSRB, the user is asked
for a username and password, from which the
location of the user's home collection is established,
and a listing of the contents of that collection is

authenticate

talk to
SRB server

clear up
session

Browser

MySRB

talk to
SRB server

talk to
SRB server

talk to
SRB server

Opaque, cookie-based,
session management

 Figure 2: Illustration of MySRB session

set up
.Mdas files

perform
Scommands

clear up
.Mdas files

Browser

HTTP
REQUEST

HTTP
RESPONSE

TobysSRB

 Figure 3: Illustration of TobysSRB session

retrieved and presented to the user. A screenshot is
shown in figure 4.

As can be seen, collections (A) and individual
data objects (B) are listed separately. The collection
names are links which will return a page of the same
format, displaying the contents of that collection.

The filenames are all links which will directly
return the files; thus following them will allow the
browser to render them however it can, and using the
normal browser mechanism (usually right-click and
select “Save As...”) will allow downloading the file.
By constructing the URL appropriately, we have
ensured that when saving the file, the browser knows
the filename and will save it under that name.

In the top left of the screen, there is a list (C) of
all the parent collections, which allows quickly
navigating back up the SRB.

At the bottom of the screen are two forms; the
first allows for quickly listing a given directory
rather than having to navigate page-by-page
throughout the hierarchy; the second allows
uploading local files.

Two further things are worthy of note. Firstly,
notice that each collection or filename is preceded by
two links (D) labelled 'a+r' and 'a-r'. These change
the permissions on the file or collection (recursively
for collections) and add and remove, respectively,
global read permissions.

The SRB of course offers much greater
granularity of permissions, but we have found that
the only changes we generally make are to global
read permissions, and a quick button click is
distinctly easier than Schmod's arcane and poorly
documented syntax. Trying to allow for the full range
of allowable permission modifications would
significantly complicate the interface.

Finally, as previously mentioned, all files
suffixed .xml may have an additional link appended
(E). This is because most of the XML files we
produce within our project are CML files, and we
have also developed an on-the-fly CML-to-XHTML
convertor to allow easy viewing of such files[6].

Scriptable API

Part of the purpose in creating TobysSRB was to
provide a stable and robust programmable interface
to the SRB, accessible from computers where the
Scommands are not installed. For this reason, all
TobysSRB functions are accessible with a simple and
well-documented API, described in this section.

TobysSRB receives information from a client on
two channels;
• HTTP verbs
• CGI argument list.

HTTP verb

TobysSRB understands the following four HTTP
verbs, and performs appropriate actions:
• GET - for retrieval of information; either of a

directory listing or of file contents.
• PUT - a file will be uploaded.
• DELETE - a file or collection will be deleted.
• POST - one of a variety of other actions may be

taken.

When TobysSRB is invoked from a web-browser,
only GET and POST will be used; but PUT and
DELETE can be used from scripts which issue
HTTP requests.

CGI argument list

A range of CGI arguments are recognized, which
TobysSRB will act upon. A full description of the
API is beyond the scope of this paper, but by
appropriate combinations of parameters, all of the
SRB actions TobysSRB knows about may be
performed.

The API is clearly documented, and easily
understood. Most importantly, files are easily
accessible from a single, stable, easily generated
URL, which looks like
https://my.server.ac.uk/TobysSRB.py/
path/to/filename?
username=user;password=pass;

By accessing that URL with GET, the object may
be retrieved from anywhere, accessing it with PUT
will place data into the file, accessing it with
DELETE will remove the file, and - in concert with
additional CGI parameters - accessing it with POST
will perform all other available operations.

If the URL ends in a ‘/’ then it is assumed that the
relevant SRB object is a collection, and so a listing of
its contents will be returned; if not then it is assumed
to be a data object, whose contents will be retrieved
and returned. If either assumption is wrong, a
redirect will be issued, in the same way as would
happen for an HTTP request.

A: Sub-collections

B: Files

D: Permissions

C: Ancestor collections

E: External viewer

 Figure 4: Screenshot of TobysSRB

Philosophy

This API very much follows the REST
(Representational State Transfer) philosophy [7] and
may be seen as a lightweight alternative to wrapping
the SRB with Web Services. Each SRB collection
and file may be perceived, through TobysSRB, as an
HTTP-accessible resource, upon which various
operations (retrieval, modification, deletion, etc.)
may be performed.

In this fashion, all of the SRB operations
supported by TobysSRB may be used from a script
capable of running on any internet-connected
machine, without recourse to the Scommands.

Thus the command
 Sget /path/to/file_of_interest
may be replaced, when Scommands are unavailable,
with
 wget “https://my.server.ac.uk/
 TobysSRB.py/path/to/file
 username=user;password=pass”

Other interactions are easily performed by
generating more complex HTTP requests, some of
which can be done with wget or curl (which are
almost universally available on the Unix command
line), and for those which cannot, generation of an
HTTP request is less than 10 lines of easily
abstractable Perl or Python since modules exist for
this in the standard libraries of both.

It should be noted that the SRB username and
password must be known by the script in order to
create the URLs. In simple cases, they could be
stored inline in the script, but they could equally be
dynamically read from a file, or generated by user
input. This does not however make the method any
less secure than other existing methods the
Scommands need to know these data as well, but
simply store them in the .srb directory. By allowing
them to be stored or generated elsewhere, we place
more power in the hands of the user, since they do
not need to create .srb directories on every
machine; nor are the usernames and passwords so
easily discoverable should a client account be
compromised.

This API therefore provides an accessible way of
automating SRB interactions. In addition, since
TobysSRB acts as a buffering layer against the
vagaries of the SRB, and returns well-documented
error messages, it can act as a considerably more
robust SRB interface for scripts, even where the
Scommands are available. Since no additional client
software is necessary, it can be immediately used on
any internet-connected machine without preparation.
And finally, the interaction occurs wholly over a
single port, which generally speaking will be port
443, and universally available, so the resultant scripts
are portable to any client machine without the need
to worry about firewall issues.

Comparison with MySRB

Clearly, in some respects, TobysSRB is a direct
replacement for MySRB, as a web-based interface to
the SRB. A brief comparison follows.

MySRB supports a much wider range of SRB
operations. It is the primary interface where new
features in the C API are prototyped and exposed to
the user.

In comparison, TobysSRB supports only the
operations

• file retrieval
• file upload
• file delete
• collection listing
• collection creation
• collection removal
• add/remove global read permissions
However, in our experience, these compose by far

the vast majority of operations performed, and are
the only ones that we have found it useful to script -
in any case, all other operations remain available
through the Scommands.

Because TobysSRB supports a much reduced
range of operations, its UI can be much simpler. This
means that it could be designed in a fashion
analogous to a typical graphical filesystem browser,
which makes it easily accessible to any computer
user familiar with that paradigm.

In addition, MySRB makes a distinction between
viewing a file and retrieving it - when viewing it,
MySRB second-guesses the browsers rendering
capabilities, and massages the output in various ways
before rendering it in a frame. This means that, for
example, an SVG file may not be viewed through
MySRB, because it is transformed into fully escaped
HTML and presented to the browser as text.

TobysSRB, on the other hand, presents the file
straight to the browser, mime-typed accordingly, and
allows the browser to render the file how it, or the
user, chooses.

Further, since MySRB is a stateful application,
which uses cookies for session handling, it is very
complicated to automate a MySRB session.

TobysSRB, however, works entirely statelessly,
and therefore scripting an upload or download is as
simple as performing (through curl, or wget, or
Perl or Python) an HTTP request to a URL.

Finally, although the source for MySRB is
available, so in principle it could have been altered in
order to fulfil our requirements, and would be
extensible for the addition of external links, in
practice this is not the case, since it consists of 18000
lines of code, which is somewhat opaque to the
uninitiated. In contrast, TobysSRB consists of 500
lines of Python, and is much more easily altered.

User experiences

TobysSRB is now in use across the (multi-
institutional) eMinerals project which employs the
authors, both for project members, and for the
undergraduate students who work with the project. In
addition it has been disseminated to a number of
other users within the institutions hosting eMinerals.
To the best of the authors’ knowledge, every user
who has been exposed to TobysSRB prefers it to
MySRB.

Some users, especially the undergraduate students
at whom it was initially aimed, use TobysSRB as
their only method of SRB interaction. Other more
advanced users continue to use the Scommands for
some, if not most tasks, but when web access is
required (for use from remote computers) or a
browser interface preferred (for viewing XHTML or
SVG files), then TobysSRB is unanimously preferred
to MySRB.

The scriptable interface has not yet been as
widely adopted, largely because there are a number
of existing tools which already use the Scommands
as their primary interface. However, several users do
prefer the TobysSRB API, and a growing number of
newer scripts are being written to work with that
interface.

Summary

Finding the currently available methods for
interaction with the SRB to be inadequate for our
needs, a new front-end was developed. This
interface, TobysSRB, pares down the facilities
offered by MySRB and in so doing allows for the
generation of a considerably more user-friendly
interface.

TobysSRB allows the viewing of any SRB file,
and is easily extensible such that it can, for example,
automatically create links to external services, such
as the CML viewing tool described in [6]. The
primary objective of TobysSRB was to provide users
within the eMinerals project with a user- friendly
interface that performs all the commonly required
tasks with greater facility than those tools already
available.

Furthermore, the requirement for intelligent error-
detection and timeout handling when wrapping the
Scommands has resulted in the creation of a RESTful
HTTP API for interacting with the SRB, allowing
SRB interaction in a robust and network-transparent,
universally accessible fashion.

Both objectives have been achieved, and
TobysSRB has become a transferable tool that can be
used by any project using the SRB.

Acknowledgements

We are grateful for funding from NERC (grant
reference numbers NER/T/S/2001/00855, NE/
C515698/1 and NE/C515704/1).

References

[1] Moore, RW and Baru, C., “Virtualization services
for data grids” in “Grid Computing: Making
the Global Infrastructure a Reality” (ed.
Berman, F. Hey, A.J.G and Fox, G., John
Wiley) Chapter 11 (2003);

 Also, see http://www.sdsc.edu/srb
[2] Doherty, M., et al, “SRB in Action”, All Hands

Meeting, Nottingham, 2003;
 Manandhar, A. S. et al.“Deploying a

distributed data storage system in the UK
National Grid Service using federated SRB”,

All Hands Meeting, Nottingham, 2004;
 Berrisford, P., et al., “SRB in a Production

Context”, All Hands Meeting, Nottingham,
2004

[3] Bruin, R.P., et al. “Job submission to grid
computing environments”, All Hands
Meeting, Nottingham (2006) - in press;

 Calleja, M. et al. “Grid Tool integration with
the eMinerals project”, All Hands Meeting,
Nottingham (2005);

 Calleja, M. et al., “Collaborative grid
infrastructure for molecular simulations: the
eMinerals minigrid as a prototype integrated
compite and data grid”, Mol. Simul. 31, 303
(2005)

 Chapman, C. et al., “Managing Scientific
Processes on the eMinerals mini-grid using
BPEL”, All Hands Meeting, Nottingham
(2006) - in press

[4] http://www.sdsc.edu/srb/index.php/
Contributed_Software

[5] Fielding, R. et al., “Hypertext Transfer Protocol
-- HTTP/1.1”, RFC 2616, 1999.

[6] White, T.O.H. et al., “Application and Use of
CML in the eMinerals project”, All Hands
Meeting, Nottingham, 2006.

[5] Fielding, R. et al., “Hypertext Transfer Protocol
-- HTTP/1.1”, RFC 2616, 1999.

[7] Fielding, R., “Architectural Styles and the Design
of Network-based Software Architectures”,
PhD thesis, University of California Irvine,
2000.

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

	Abstract
	Introduction
	Introduction to the SRB
	SRB interfaces
	Use of the SRB
	Deficiencies in current methods of SRB interaction
	User interfaces
	Developer interfaces
	Motivation
	Approaches to a solution

	Overview of TobysSRB
	Internal implementation
	Configuration and authentication
	Session State
	Interaction with the SRB and error handling
	Extensibility

	Web application UI
	Scriptable API
	Comparison with MySRB
	User experiences
	Summary
	Acknowledgements
	References

