
Job Submission to Grid
Computing Environments

Richard Bruin
eMinerals project

Departmen of Earth Sciences
University of Cambridge
rbru03@esc.cam.ac.uk

mailto:rbru03@esc.cam.ac.uk
mailto:rbru03@esc.cam.ac.uk

Outline..

eMinerals project background

Submission tools and their requirements

my_condor_submit

Parameter sweeps (ensemble studies)

The eMinerals project
Fairly large, NERC funded project

6 Institutions

30 staff - PhD through to Professors

Wide ranging research interests

Scientific modelling

...

Grid computing

eMinerals Science Research

Pollutants and their adsorption onto
minerals

Water (and its influence on adsorption)

Radiation damage / waste containment

eMinerals grid research
Building and configuring grids

Job submission tools

Data management

Metadata management

Data processing / Information extraction

Simulation output visualisation

The eMinerals minigrid
A prototype heterogeneous, integrated grid
infrastructure

Job submission tools
Standard tool requirements:

Simple to use

Non-intrusive to the user

Allow the user to do what they want

Grid tool requirements:

Appropriate data and metadata handling

Ability to metaschedule across any resource

Automated as far as possible

my_condor_submit (MCS)
Single job submission per invocation

condor_g style interface

Metascheduling across any Globus resource

Metadata storage (RCommands)

Information extraction (AgentX)

Data handling / archiving (SRB)

MCS input file
 # Specify the name of the executable to run
 Executable = gulp

 # Specify where the executable should get stdin from and put stdout to
 GlobusRSL = (stdin=andalusite.dat)(stdout=andalusite.out)

 # Specify an SRB collection to get the relevant executable from
 pathToExe = /home/codes.eminerals/gulp/

 # Specify a metadata dataset to create all metadata within
 RDatasetId = 55

 # Specify a directory to get files from, put files to and relate to
 # metadata created below
 Sdir = /home/user01.eminerals/gulpminerals/
 Sget = *
 Sput = *
 # Creates and names a metadata data object
 Rdesc = "Gulp output from andalusite at ambient conditions"
 # Specify metadata to get from files with Agent-x - get environment
 # and default metadata only
 AgentXDefault = andalusite.xml
 GetEnvMetadata = True

MCS metascheduling
Relatively simple round-robin algorithm

Allows user to limit machines to schedule
across

Supports different architectures (including
multi-processor and multi-core machines)

Supports serial and parallel jobs

Automatic load balancing across all resources

MCS metascheduling cont.

Submit job
Machine A

Machine B

Space for job?

No..
Space for job?Yes..Run this please..

MCS job execution workflow

Three stages, handled by Condor DAGman:

Pre script: Stage in executable and data
from the SRB

Run job

Post script: Stage out data, collect and
store metadata

MCS data handling

Data staged in and out from the SRB

Transfers to / from any number of
collections

Support for wildcard file specifications

Use of recursion allowed

MCS information extraction
Using AgentX

Ontology based system - logical
querying, hiding filesystem structure

User specifies simple XPath-like query:

AgentX = finalEnergy,
chlorobenzene.xml:/Module[last]/
PropertyList[title = ‘Final Energy’]/
Property[dictRef = ‘siesta:Etot’]

MCS metadata storage
uses RCommands for storage and structuring

Subset of the CCLRC Metadata model

Simple binary command line web service clients

Three types of metadata collected:

‘Environment’ metadata

‘Default’ metadata

‘User specified’ metadata

MCS supported machines
Currently tested list:

Each type of eMinerals minigrid machine
(PBS, SGE, Condor, Loadleveler)

NGS core nodes (PBS)

NW-Grid clusters (SGE)

...

Basically anything with Globus installed!

Parameter sweeps
MCS designed for single job per invocation, need
something to handle large ensemble runs. Including:

Simulation code input file creation

Submission tool input file creation

Any necessary data staging

Simple manner to submit this many jobs

Ways to manage and monitor these jobs

Ways to collate and view the output from these jobs

Job creation
Single command and a config file

Specify:

string to find / replace in template input file

Start and end values for sweep

Number of steps in between

Input files created and uploaded to the SRB

MCS input files created for later use

Job submission
Single command:

Walks through created jobs

Submits each found job using MCS

Keeps track of job directories and IDs for
monitoring tools

Commands to check that all jobs submitted
and resubmit any failed submissions

Job monitoring

Standard condor_q command to see what’s
running

Additional command checks whole set of
jobs, informing user if any still running

Processing sweep output
User provides, entries in configuration file and
name of files to process.

Our simulation codes use CML, this means we
can, with one command:

Combine the files together

Extract relevant information from them

Translate the CML into SVG, drawing
pretty graphs

Pretty graphs...

Conclusion...

Example uses given in the paper (no time to
show here I’m afraid)

Any questions?

